AD-A194 355 PROCEEDINGS OF THE STRATEGIC DEFENSE INITIARTIVE
ORGANIZATION <(SDIO) TOOL . (U) INSTITUTE FOR DEFENSE
f] ANALYSES ALEXANDRIA VA D HEYSTEK 04 MAR 87 IDA-N-388
| UNCLASSIFIED I1DR/H@-87-32084 MDA9@3-84-C-0031 1
'

- ————

-
~
[~]
N
~
o

J

L6

- = 2l 2

= =
==
=

didaz 9

|

I
|
i

P AR AN A N Ik I RSy
l‘l- 4N NS . \-\J.- .-- -~h-.¢_\<x
A AL S

-).

E i o W UNCLASSIFIED T e 17 o

‘.

IDA MEMORANDUM REPORT M-308

PROCEEDINGS OF THE STRATEGIC DEFENSE
INITIATIVE ORGANIZATION (SDIO) TOOL FAIR
JANUARY 26-27, 1987
ALEXANDRIA, VIRGINIA

AD-A134 355

b Deborah Heystek, Editor

E March 1987
0
& £ ‘ e x : 'rajm‘a(
D obmme s temied L
Prepared for
R Strategic Defense Initiative Organization
[S
b INSTITUTE FOR DEFENSE ANALYSES
o 1801 N. Beauregard Street. Alexandria, Virginia 22311
b -

} UNCLASSIFIED IDA Log No. HQ 87-32084

-.‘b
e
[- - DEFINITIONS
RGN {DA publishes the following documents to report the results of its work.
t Reports
4 _-':-_ Reports sre the most suthoritative and most carsfully considersd products IDA publishes.
A5 They normaily embody resuits of major projects which (a) have a direct bearing on decisions
3 :.-_:. affecting major programs, or (b) address issues of significant concem to the Executive
o Branch, the Congrass and/or the public, or (¢) address issues that have signilicant sconomic
.":\. implications. (DA Reports arw reviewed by ouiside paneis of experis to ensure their high
f S quality and relevance to the problems studied, and they are released by the President ot IDA.
o Papers
A Papers normally addrsss relatively restricted technical or policy issues. They communicate
.-:‘ K the results of special analyses, Interim reports or phases of a task, ad hoc or quick resction
o work. Papars are reviewsd to ensurs thal they meet standards similar o thase expected of
SN reteraed papers in protessional joumals.
ey Memorandum Reports
° IDA Memorandum Reports are used for the convenience of the sponsors or the analysts to
- record substantive work done In quick reaction studies and major interactive technical support
activities; to make available preliminary and tentative resuits of analyses or of working
- group and panel activities; to forward information that is essentiaily unanalyzed and unevai-
p T uated: or to make a record of conferences, meetings, or brisfings, or of data deveioped in
:', the course of an investigation. Review of Memorandum Reports Is suited to their content
TR and intended use.
(The resuits of IDA work are aiso conveyed by brisfings and informal memoranda to sponsors
ey and others designated by the sponsors, when appropriate.
~$..--
l\"-.nﬁ
Sy
Ny The work reported in this document was conducted under cantract MDA 903 84 C 0031 for
b -”.{ the Dapartment of Defense. The publication of this IDA document does not indicate sndorse-
. 2 ment by the Department of Defense, nor shouid the contents be construed as refiecting the
) official position of that agency.
-‘, .
o5
v .' o
: ol This Memorandum Report is published in order to make available the material it contains
1 ", for the use and convenience of interested pasties. The material has not necessarily basn
"-':-. compfetely evalusted and anatyzed, nor subjected to (DA review.
w
o
hon 4
o Approved for public refease; distribution unlimited.
SO
.~
-.’-’-—
-"-"\
o
§.-
By L0
b _J"_:.
-
~.':~.'
-
- ":
-:":.
u'::<_
..
l’\.;'\
[X
oy -
¢ b
J‘:'J
F S
o

Yo

At At « Y LY O N R T
R AT Y 'J-:.-.r{: A
[l » ! - 5 » » - L) . » . » - £ »

Axh

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE /7. ﬂ-” /24T -

ia REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSIFICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release - distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
IDA Memorandum M-308

§ MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION

Institute for Defense Analyses IDA

6b OFFICE SYMBOL

7a NAME OF MONITORING ORGANIZATION
DOD - IDA Management Office

6c ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22311

75 ADDRESS (City, State, and Zip Code)

1801 N. Beauregard Street
Alexandria, Virginia 22311

JORGANIZATION

Strategic Defense Initiative Organization SDIO

P
Fn NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL

(it applicable)

8 ADDRESS (City, State, and Zip Code)
SDIO/PL
Room 1E149
Pentagon, Washington D.C. 20301-7100

10. SOURCE OF FUNDING NUMBERS

MDA 903 84 C 0031

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

[PROCRAM
ELEMENT NoO.

NO.

TASK
No.
T-R5-422

ACCESSION NO.

11 TITLE (Inciude Security Classification)

Proceedings of the Strategic Defense Initiative Organization (SDIO) Tool Fair, January 26-27, 1987 (U)

12 PERSONAL AUTHOR(S)
Editior - Deborah Heystek

i3a TYPE OF REPORT 13b D

Final FROM TO

14 DATE OF REPORT (Ysear, Month, Day)

4 March 1987

5 PAGE COUNT
207

16 SUPPLEMENTARY NOTATION

17 COSATI CODES
FIELD GROUP

i8 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

CBD announcement, SDIO Tool Fair, Software Technology Integration Plan, software
SUR-GROUE_J environments/tools, SA/PDL - an Ada-based Process Description Languag
SDIO Program Office, System Design Languages/Methodologies.

<,

SA/PDL (an Ada-based Process Description Language).

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This IDA Memorandum M-308 has been prepared to disseminate information provided to IDA by participants at the SDIO
Tool Fair (January 26-27, 1987). The objective of the task order responsible for this Memorandum is to generate a list of
software tools/environments to be acquired and evaluated. The SDIO Tool Fair is a “starting point" for the evaluation of such
off-the-shelf products, which will support the development, generation, simulation, or evaluation of systems described by the

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
S UNCLASSIFIED/UNLIMITED 1 SAME AS RPT. CIDTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL
Dr. Cathy Je Linn, IDA

22b TELEPHONE (Include Area Code)] 22c

(703) 824-5520

OFFICE SYMBOL
IDA/CSED

DD FORM 1473, 84 MAR

=

e R
I e e e

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS |

\-'- T w e Y e
K *5"3"'-'.*'.“'-"'-

L

e
'-h)

-

UNCLASSIFIED

-y e

SRRARAIE iy

-';.l; b’

N
e

CLPEL A

LN

XA

IDA MEMORANDUM REPORT M-308

PROCEEDINGS OF THE STRATEGIC DEFENSE
INITIATIVE ORGANIZATION (SDIO) TOOL FAIR
JANUARY 26-27, 1987
ALEXANDRIA, VIRGINIA

Deborah Heystek, Editor

March 1987 T

PO
IDA

INSTITUTE FOR DEFENSE ANALYSES

Conaact MDA 903 84 C 0031
Task T-R5-422

UNCLASSIFIED

Eak o
o W

LA N &

e u ey
AP RS R g a4

R S8 SN e

At o ey, o
w

Chalhd b b

Y

[)

.

t
l' v
a s

T

SENA

Table of Contents

415 £ 1ol PR 1
ACKNOWIEAZMENLS.oviiitit it e e v
Introduction..........c.coevveviiiinennnnnn.. et eeactetereee e e araeeenrrrr e aaaaans vii
CBD Announcement.......................... reereeneen et ix

Responses to the SDIO Tool Fair Questionaire Appear in the Following Order:

CADRE Technologies, Inc.......... ceereaees et 1
Teledyne-Brown Engineering............cccoevveiiiiiiiiiiininiininnen.... s 12
Advanced Systems Architectures................c.eeenen. ettt 25
Jodfrey Associates, InC........ocoviiiiiiinn.... et tetete ettt et earaaaaaaas 59
Westinghouse Electric Corporation...................... ettt re e, 67
TASC - The Analytic Sciences COrporation.ovueeeeenerneneenreeirennennennn..s 85
Syscon Corporation................ ettt e e et aaete it eeraeaaaanaaaanans 95
N0 LT« T OO 111
Associative Design Technology, Inc........... e reaeeaaas e 119
ADCAD,INC....covvveiiiinnnnennnn. e eeeeeriraaterereannn eeeae et eanaaaaa, e 131
Research Triangle Institute..................... et eta e e 141
TRW at U.S. Army Strategic Defense Command........ ettt teereeree e e 151
Intermetrics, INC........vvivniiiiiii e 173
Integrated Systems, Inc...........ccooiiiiiiiinininena.n. ettt e et e, 185
Software Products and Services, INC.......ovvviriieiiniiie e e eeaanins 195
i

[S SR ~
. -l Ca e
~ ‘..’\)_x ,;\'(ﬂ \ %,

o

MR LMt R
Chl i i X AN,

» ANy
A

‘~

-"
> N
O

.

W

NGO

.!“J\‘o l.!‘.. .- !M-c »

.

hiy

L }

.
1,

=y

P,
-\

4
s,

-
]

"
[N

ATARN |

L
N N

-

el

o

r"l L
”

R T T I N Y PO S LT
N D I N N N T RO W i\"-‘f*-\ ‘V

Preface

The purpose of IDA Memorandum Report M-308, Proceedlngs of the Strateglc
Inltlative Organization (SDIO) Tool Falr, 15 to make avallable Information
provided to IDA by the SDIO Tool Falr participants. This information was
used durlng the selectlon process which lead to vhe Tool Falr.

The lmportance of this document is based on fulfllllng the objective of Task
Order MDAS0O3 84 C 0031: T-R5-422, SDIO Software Technology Intcgratlois
Plan. which 1s to “generate a llst of software environments/tools to be
acquired and evaluated.” MN-308 will be used as a starting point in the
tormal evaluation of "off the shelf™ products that support the development.
generation. slmulation, or evaluation of systems described In the Ada pro-
gramming language and SA/PDL. an Ada-based Process Description Language.
As a memerandum Report. M-308 Is directed towards the SDIO Program
Office.

iii

Y O
A ANEATN Aa S X0 M X X3

SN

o
J?:?&. L

AN

.

‘l--:y"-’

*-A.
=

[o

Ty

O
NN -._‘r‘_

2 s
LA

4
.

0N

=i

e
P s

A

I
SRV AE

X
.

r
@

H

'.
RANARA

—~

’
N S

.
]
A

L

.

AT
4

I I R
Jul Bk N

L 1A

4

€

(o s

-
-

"

L]

LA

V "

Acknowledgments

The edlitor is indebted to the participants of the SDIO Tool Falr for thelr
cooperation In this eltort., and to all the IDA support staff who have helped
durtng this phase of the project.

\
D A hY - L Y PRIV) W S g RN ; ‘AN " "
~ N N A G R oy R s LA LHhuNLIeS
z ‘ g ; o L ML " B 0 a0 M o) »

PR Iy

whh

Introduction

r‘ This document contains responses by Strategic Defense Initlative Organization
(SDIO) Tool Falr partlelpants to questlons posed by The Institute for Defense
Analyses (IDA).

L
flAeed

(I)

e
’y

N IDA recelved a request from the SDIO to review Automated System Design
Languages/NMethodologles (SDLs). The goal was to evaluate these products and
determine thelr applicablilty to the task of specifying system and BM/C3

\)
-

"‘_:" e

Ly T architectures.

o

\,\ :::Z A Tool Palr was organized to famlillarize IDA, SDIO. SDIO contractors., and
gy other Interested partles with the tools and environments currently available.
IR To cenerate a list of products for particlpation In the Tool Fair. IDA

e A published a Sources Sought announcement in the Comierce Buslness Dailly
:.:.\ B {CBD) on November 11. 1986. (A copy of that announcement appears on
::-.:: the following page.) A number of responses to the CBD announcement were
Froe o received. and from those a group of tools was selected for Inclusion in the
.A ' <DIO Tool Falr held January 26-27. 1987. IDA recognizes that (1) not every
| \j S tool vendor was aware of the CBD announcement. Thus, 1t iIs possible that
t{ \'- some very good tools were not represented at the Tool Falr. and (2) the

J‘:’v selection of participants In the Tool Falr was based entlrely on information
N o>y provided to IDA by the tool vendors.

{ (

‘:::j:: The next step In this evaluation of tools and environments for the SDIO s o
1'..:- o more thorouzh and formal analyvsis of not only the products represented at
':;:':: '-,'";\ the Tool Falr. but also any applicable tools and environments that may have
ha heen overlooked durine the preliminary evaluation.

o\ B
/".':"z r, W
L (8 'r-:

s
1

Py e
H AR A

Ry

Vel

&

o T 2
El ALl
-'v':ﬁ'*:‘i'r r
LN RS IR N
. S". .'-".'A'J

ata s

el

L} l.l'
P

-~ o a- ‘.‘" ol
' '>’?L' l'j“ q."l.'

oL%

A e &

" 2
T .

vii

¢

'..‘l.‘.
ARARR

R LG L. I N P N I P T L GG L UL L TN na
'J-""r.r_‘ e, -h"l:r,,\h"r AN ST -"‘.r L oy

TV
‘\.. ‘-"_\

u

- - o o -
. el _,.J_,

"
s

(o

- LI R
’.q :(-I'J‘. .

oL

bR
NN
g. I!.*.
N~ . . :
O lustitute tor Defense Analyses
:.*' "j} 1801 N. Beauregard street
Ny Alexandria. VA 22311
e ATTN: Deborah Heystek
)
o =DI SYSTEMN DESIGN TOOL FAIR
:j:'i ,»::_ The Strategle Defense Inltiative Organlzatlon (SDIO) has specifled an Ada
‘— Process Description Language (PDL) as a required formal presentatlon for
' l__, desceriptions of syvstem and BM/C3 architectures. This PDL 1s to provide the
: N basls for design refinement and enhancement -- a typilcal role for existing
ﬁ: - Program Deslgn Languages. [t is also, however., to be used to produce Input
o o to system and subsystem simulations in an automated manner.
W
- The PDL is a representation formalism only. [t has an advantage in that It
e ' dees not require the use of any specitlic design methodology. It has disad-
:'_-'_: o vantages in that it 1s not “user friendlyv” (for non-Ada programmers) and
:‘_'-" . since it Is methodology independent. does not provide a vartety of tools to
: P:; assist in producing and visualizing designs.
@
f:'_"_ . The =DIO 1s interested in ldentifying and evaluating “higher level”™ Syvstem
_-‘;A -2 Desien languages/Methodologies (SDLs). It is undertaking thls effort as an
:::::) initinl step to deciding on the utllity of specifving a standard SDL or of
':-:: - establishing requirements tor SDLs without specifylng a single formalism. To
D this end, It Is requesting organizations that have developed an appropriate
;_-r.\- (see below) automated system design language/methodology to provide
",: . information about this language/methodology to the SDIO. It Is planned that
:": T the developers of SDLs that are judged to be of potentlal Interest to the
o~ =DIO will be Invited to make a presentatlon In mid December to describe.

analyvze, and document a sample proposed SDI architecture component.

Anm

'}':.' Orzanizations should subpiit o "Fact Sheet™ of no more than - pages to
':,..\ _, desertbe the charncteristics of thelr SDL. Supplementary materials (e.g..
::s ~- inehuding manuals, description of formal languages) are welcome. but the F
!.‘ . Sheet must he sell-contained.
G
O Thi~ aet sheet st specify the systems ability 1o
;::: .C". 1. Produce Ada PDLoas output
A 2. Represent farze {(over 10.000 components) systems
_,i'\': . 3 Represent both logieal and physieal systems
-:.'_" ::; Lo Acceept eraphieal Input aad manipulation and
:':'_:) 5.0 Runoonoa o widely avalianble operating svstemn,
oL
e,
!’." Planned Marare capabilittes nst bhe differentiated from cenrrent system
:.: capahiliries,
Sy
>

\
"n‘.\"t . »

LY
i}

e N A e A N N LS LA S A WA T YOI S L SR A
oy . LYW --'. X LA N .‘l..‘-‘.ﬂ.n *.‘(N r'\.

“act

AN '~.":;..;\‘"\‘—\ '

I ad Sad AR Sl b Saa'A A & b A s]

=)
—_— = =
T =
s o8
ool
L -
T
=
~ —
= 3= =
=
‘. = D
= =
-~ C°
= = .
L = @
) [E N ol
- mll o ”
= =z
ot)
2 B
- -
. [SolES T
~ T
: = e
A .
~
.
')

”
L v : : -’
Y STV W

‘'

RS

>

»

™ «
PRI
.h..l..AAl'A‘ .A'

YW Y

- l’

. o
) A S u... S - o) YA N o ..D. < L Ls... LI TR W I ‘e NS u H..r.b

[/ e s a e e A s age e e P U CetateT a3 s E PN Yor oy v PR Rt I i DAL S SR AP IR N I LT LIPS o | SR AN b AT .-A
SR @, - ENe - LIRS OO JIOENN AR ..F_,.n AL ERRRAREL Y SN N 0 @SS

[]
AT

\¥

@

-
- o
'1“-’“-)

X

R
Il e

(s

. g

.
»

g
RN
-'f -‘{ c,~’.'. '.‘l.'.

LR

£_0 1]
T N u:n' *
&St

56

F .
RN P

B
. x

¢, a4, .l .
LA B

o e
[N
AP E S

~1@%

A

oA
~-"' y
4 =4

PR

G
s B

@

]

Pd

~2
b o
T % “

P

CADRIE Technologles, Inc.

1. Describe how your system supports early detectlon of Inconslstencles,
closure and errors.

Teamwork provides semantle and syvitactie error checking. inconslstency
cheeking and closure on analysis agel desten modets,

2. What type of progress metrie does the system produce? Is 1t quantifi-
able measure of ¢ompleteness?

Toamwork allows the user (Goeapture progress metrles during all phases ol o
prodect, 1 does this o two anatn ways: by omaintaining verstons and statos
intormation cnoeach object that is edited,

Toamnwork maintaius <tatus information of all mode! diagrams created in the
<v=ter. This information includes who changed what object and when it was
el Thiere 1= alko o place Tor the user to annotate each object to
coptnre the prowaress as o oseen by the user. A status report tool 1s provided
oo disr Thi- intormation for all objeets in oo given model.

<ivteen versions of each object that s edited are maintained by Teamwork.
Tlhe tomber of versions of an objecet ean be considered o progress metric.

Ab~cn usine Teamwork/Access users ean extract many useful metries that are
captired asoa natural by-product of using the tool. Indleations on stze andd
complexity of models are easily obtained. Neasures ol completeness of n

Hede] e alscoeasy to obtain (tes) how many fanetlons have associated data
Aletionary or spees that have heen defined. These Indicators can be el

inoestimation acetivities or as progress indieators.

Codre has o Bone Netrie hooks into Teamwork for users interested in
Pkt af reintive complexity as oo predietive aide GREC i the UKL s
crprenttv o inderteing their GEOCONMO (CoCoNlo) tonl to teamwork usine the

Tk o Neeess eilities,

3. Deseribe how your system supports documentation, program management
and control.

Vb=l et desTen edelss e perts o these models, enn e prinded
Bicottn oo Toomwerke Printer- o hoth dot-mintrix and Inser fortints are
Gt D e svstemn Dnmiaer K uses Postsertpt sind INTE IR PSS Formats
Pl et ared Ditinaps. Dinerains ol text oerented in temmworks are
ol toeh et b e o e perntions paeknees, Teamwerk currently

:'w':
4 \-‘
.. +

A
A

> .
i “npports aterfaces to three popular packages, Interlear’s TS and WP,
+ . . . N L s

- ComtextUs DOC, and Unilogie's seribe. NMany Teamwork users are currently
(neine these Paeilltles tao easthy create DODR-STD-2167 or <similw documents.
:‘..\'. Dincrams and text ereated tn teamwork are also eastly Ineluded In o confizura-
N flon management svstems, sueh as DSER (Apollo), ONs ((DEC)L and SCOS
o PUNING. 1o facilitate project management and control. Teamwork customers
e arc using these tools 1o Base-Nne spees aed destgns and malntaly refated
(. -

e ~onree code iles,

1. Desceribe how your system supports real time design.

. Toamwerk, RT provides complete antomated support ol the Lear Seigler/Boce-

e preal-tine analvsis methodology. This methodology semantieally combines
“inite <tate machine modeling (showing the control aspects ol a system) with
S Plow ddieram modeling (showing the processing and data flow aspects of
svstenn, using the Yourdon/DeNareo methodoeloay i providing two separate
Foagr neesssary views ol the svstem under analysis. The Teamwork Real Time

cog iy is oty inteerated with Teamwork's analysis and design tools andd

T A= provide extensive anromated checeRing fnetlities,
o 5. Deseribe how your system supports concurrency, parallelism.

Ce Teanvwork /BT methodotogy has the capability of showing concurrent as
well ne paradlel svstems through the use ol Process Activation tables. stare
ot Tran<ition Dingrams, and State Byvent matrices. These dlagrams show the
2.—: Jrnmnde execntion of systems aed oean model concurrent task instantiations.

-
L
a'

6. s your system constrained to a particular implementation language (Ada)?
~ . . . : : . :
oo ort Is not consteained tooa partiealr bnplementation language, 10 s
- ilte suitable tor o \dn,

o

N

€ 7. Does you system produce Ada PPDL?

I".

\-f-'. Vs PO o e semantiealiv o inelnded and related to dingrams inoanalysis

:.%: Gned clesizn neelels where approprinte. Specitte type delinitions enn he

N X - X

Yol g b I e detinitions erented in the Nodnle Spectlieations inside
1o i

L3

Y
[
o,
€
R -

LG % X

€

ta L%

-
« v

{
)
»,
-
-
.
-

k]

-
,l."'

4
s e

»

v

Ty f‘l
)

)"J.'

8. Describe how your system supports life cycle Intraphase & interphase
communications.

Incraphase Communleation: Teamwork takes tull advantage ol workstation
technology. Teamwork provides concurrency control for the project database.
that allows multiple users (each on thelr own workstatlon) to effectively share

the same project data base,

This enables <everal users to work In parallel on Tleshing out’ system
~pecilfentions without danger or corrupting each others work. Team members
can see others work as it progresses and can check tor consistency. either
rheir own work only. or across the whole model as 1t is bullt. [n addition
the project database can be located anywhere within the network and may
Afso Be doeated on Iarge backend servers (such as large VANes) for ceffective
~upport of laree development teams without sacriicing the power and
performance of dediented workstations.

fetershinse Communication: Al Teamwork tools share o common project «atn
Poame. = ~trnetured analvsis, RT real time analysise IND Information modeling,
and <D o<trnetured desien. Chis allows for very effective transitions across
alvsis and desien phases of the project. For the phases ol the life cyele
ot Jdivectly o supported by Teamwork. the Teamwork/Access product can he
n=ed tooextract intormation from the teamwork project data hase and
communicate that information to other tools. As indicated earlier Teamwork
Hns <neees<tully been integrated with document production tools. cocle
devetopinent ad analyvsis tools. conflguration management tools and project
neamgement 1ools,

9. Is your systemn automated, cexccutable, compilable?

Vitemated < Teamwork s oan antomated syvstem tfor producing analysis and
desten speciliestions. The tools antomate the entry, editing, storage and
perriesal o pelnted dineriuns and text that comprise system models. These
models cor be thoueht of as “compilable™ Tor the automatic semantie,
wntactie and conststeney cheeks that can be rane I addition portions of
s it eontain compilable code or psendo-code (eoo.. Ada or Nda 1PDE)
qreo rerrievable through teamwork/Aceess, and directly compilable,
5
R J'-f‘-r.f.‘"l‘.h""-\.n
> f f -f G \. [S)
Pr amaPa !-J ra) A. Y \ v

s O
O
t..
‘ ':
&
n
S
2
thel
{ . 10. Describe the graphics support for your system.
G
:;;:: Teamwork uses iigh-resotutlon blt-mapped displayvs with a menu-driven
'f_-:': nterface. The menus are context-specific. and are in both pull-down and
':?_'._ pop-up formats. Dot-matrix and Ilaser printers output formats are supported
O) tthirongli the nse of Postseript and INMPRESS standard print langnages.,
R
:\:'. 11. Describe how your system supports concepts of:
N
"~',: ~[tarly prototyping vs. rapld prototyplng
e -Software reusabillty
-Information hiding
o -I>ackaging concept
"_‘_::'_' -Abstraction
': ::::: -Typing
6"‘— -livolutionary development
T -Generies
::f-f* -Macros
:::::j -Data flows
::-":', -Control flows
~ Prototvping s a way to quiekly assess the correctness of system requiremoents
j'::ji or desien decisions, by implementing a portion of the system and evaluating
:--:: it~ performance or correctness. Teamwork supports prototyping by Iacilitating
‘-.::' rhe entry and cheeking ot partial models. This supports prototyping, beenuse
R

the user Jdoesn’t have to complete the model - he can take picces of model

Ci

down to executable code. The Teamwork consistency checker ensures that

/

the piece of the model is semantieally and syvntactically correct,

.....
N LR)
® Y0 .'.".
.
R

strucetnred annlysis and design technlques by themselves greatly acilitate the

creation of software systems that lend themselves to rensabillty. 1t ix also
. possibie (with Teamwork/Access) to link executable code with analvsis and

(s

o) desien dincrmns. By omaintaining this linkage to backend fibrarinn or
conlffonration management SVstems users ean greatly Inerense not ondy the

Poros s

- desten butoalso the maintenance of reusable code.
.

A,
s

Tk snpports unhonnded levels ol decomposition ol processes as well os

P,

-

" t'v'-'. ¥

Dincran- On Tentmwork/sD ean be aunotated 1o deserihe packaeine,

p%
L R

g

RIS
»

-

AN
()

A

LN e
P S A A AN
VIRAYIR AN,

.
.
f
.
.
3
N
'
I3

>
LR
>

A L L L RN S 0 S
. - AT 4
- P e \‘J\.ﬁ

)y

.,.
Ay
Y
.)
X
3
X
4 8

o
g
> .
-

i ’ 4

The methodologles supported by Teamwork. described elsewhere, directly
support analysls and deslen abstraction.

Petrt

! Typing Intormation ecan be easlly Included in Teamwork data definttions, and
o easlly extracted wlth Teamwork/Access,

Teamwork supports evolutionary development for both Individual diagram anel
text oblects, as well as Iite cycle evolutlon. Sixteen versions of each diagram

! and text object are maintalned automatically by Teamwork. allowing the

& evolutionary development of these objects. The shared common data base

between all Teamwork products allows the evolutionary lite ¢yvele development
;- from Analysis 10 Deslgn to proceed without the need for re-keying the
g} information.

. Generies are supported through the use of the information hiding aud the
- abstraction of data and processes. Also. sStructure Chart diagrams n
Teamwork/sSD can be enhanced with annotations to show generles,

« The Structure Chart of Teamwork/SD has a macro modile symbol that the
consistency checker nnderstands.

The Yourdon/DeMarco structured analysis methodology supported by Team-
. work includes data tlows.

The Lear Stegler/Ward X MNlellor real-time analysis methodology supported by
.. teamwork includes control tlows.

12. Is there a paradigm embedded in your system? I so, describe it

- briefly.
A

Teamwork has embedded in 1t knowledge of Chen entity-relationship diagrams
for Information modeling, the Yourdon/DeNlarco Structured Analysis methodol-
e voye the Yonrdon/Constantine /Page-Jones structured Design methodology, and

the Lear Siegler/Ward C Netlor Real-Time Analysls methodology,

B

'j‘ This Knowledee s embedded in the lapguage-sensitive eraphic cditors, as well
as the consistencey chieeker, Stnee cheeking is oonly performed on demand. the

?;._\ seromay depart trom these paradigms 10 he so chooses,

I\

P

-

YIRS
‘.l‘('l
P

- o~y

2, 8 64 QLS
p y A S
« & 2

’l “l ‘.l

P

L4

-~
-

e A e
ST

v
PR
el

54
o
XN

a
<

@x<

K)
»t
A

PN
v e

Ly

3

l“‘
L]
[N

")

(]
4
:‘"

AR
IO

»

-....4..
(Il
L R

o
R

LN
Ps

S

13. Describe the external tools with which your system interfaces (tool
compatibility).

Teamwork objects can be retrleved in an ASCIH format with the Team-
work/Aveess tool. and hence be interfaced with any tool that understands
ARCIL Teamwork has already heen integrated with documentation systems.
Ada development systems., project management systems. and configuration
management systems.

Interfaces lave been bullt tor the lollowing tools:

STPS/MWPS irom Interteal

-xeribe frony Unilogic

-DOC tfrom Context

-R1000 Development Environment from Rational
-DSEE configuration management tool rom Apollo

11. Deseribe how your systemn supports hicrarchical decomposition and flow
direetion (topdown, bottoms-up, both, cte.), architectural perspectives (designer
creativity) and object-oriented design.

The Yourdon/DeMarco structured Anafysis methodology automated by
Teamwork/sSA supports hierarchical decomposition and flow direction. In
Teamwork. the user is not torced to take any specifle approach. such as
ropdown. He ean start anvwhere in the model that makes sense and
proceed from there. The system understands Tow direction (as well as flow
decomposition), and the consistency chiecker can ensure that Input and output
flows balance across levels of the hierarchy, Teamwork also has o Tcollapse”

mnetion that allows for easy repartioning of levels ol diagrams.

Destener creativity Is supported through the user intertace and versioning
capabllities of Teamwork. The craphies are done on o high-resolution
Lit-mapped display. with very fast response time for the creation and editing
of dinerams and text. Phis fosters desicner creativity throngh exploratory
analvsis el desien. 10 peduces operator faticue. and the designer Is less
kelv 1o lose o traln of thoued while waiting for o slow-responding systen.
The vepsionine capability of Teamwork makes it easyo to o draw dingrnnmes
iterotivelv, aned evoluate them as the desten is belng bailts 10 s cnsy o

vedraw aned re-edit dineernims and rexr,

AT S T e N A S W W ST S A L R LY
" ,“-\"’y".\ 1) < '*\' e u" . A el

LWL, T,

LGNS SR AT NS P S} -. .., NI
el a_.S__.s LN RN
. 3 B N . e . ,

—~
SIS FEEETY LN

1 L}
RS llL'l_.l |5 _"_1.'-_:_‘7_-.

-‘ 4’

M T 2t }

>

.
afa ¢

’

Ps

2L a

AN N i M)
LI I

> X s
® s &z v ¥V LK

.

SO PR RARIAN Y A

- ‘-

prde .

?

r
LYY

4

fataRatat wal dal ol bap Bah Bal Sk S s A g i A-g ate Sid

15. Is your system supported by formal syntax & semantics? Describe
briefly.

The syvstem is supported by formal syntax and semantics. See question 1.

16. Outline typlcal utllization costs for your system (cost of acquiring, using,
tralnlng, & maintaining it).

Flardware costs AWorkstation prices ean vary based on vendor or volume
disconnts, use $15Iw per workstation as an average price today. We expect
prices o continue to deeline to well below this avernge within the 87
timelrame.

Software costs SI6I st price per single seat of Teamwork, volume dis-
connts and site Neenses are available, laree customers average under $10Ix per
<eat for Teamwork llcenses.

Trainine costs A range of training s oavailable, Charges vary based on type
of trainina. Contact Cadre with specetile needs,

Naintegance costs ¥1200 annuallyv, hardware and software,

17. Indicate the hostabllity (measurc of degree of portability) of your
system.

Teamwork s mplemented in C and has proven to be portable across a wlde
rance o workstation platforms. Teamwork is currently avallable on the
toltowine hardware platforms:

Apolio (Al models. under Aegls or Domaln/IN)
sun (Al models. under Unix 1.2/3)

DEC (AN VANstatlons, under VN[S)

INT (PC-RT, under AIN-UNIN)
floawlett-Uackard (9000 <eries, tnder HP-UNIN)

.v'\ -J."\wﬁ-* *}‘ -pm _*',.‘.\‘.(ifb-(n"'."'- " ‘-nv
L ~ l’ "‘ ~ \‘ " A "l B lg' .J .- ~ \ ' -- .‘.0.‘. 3 X) '-&-:‘.,‘0“—‘ I"l ,:"..

£ a »_ ¥
B L4
A

—

% % S

oA

e

b
P

oY
~
=
~
{a
~

s

e

AL \
Wi

SRR

-

n

L

- - - -

1,58
_\l _ll .IU .I

Pl

Al

&5 sxss.-.-.'.'.

‘'@

a xie

x

[

2,

, _
o T
.

v
P

[

[

" “ VoW w w ey o e ke CWTVYT PR B A AR Sl Ral Sol Bol Sab

18. Describe how your system supports Interdisciplinary abstractlons/represen-
tations (l.c., systems englneering, software englneering, hardware englpeering).

The stractured analysis methodology supported by Teamwork 1Is not speclfic
in the ahstractions/representations that can be deseribed. in terms of
modeling software. hardware. or people. The methodology provides a
universal abstraction. showing transformations on data. without caring what
the data is.

19. llow complete is the methodology - do its principles embody

-A devclopment methodology only
-A design methodology only

-A programming methodology only
~-A project control methodology
~A management methodology

~All of the above

The Teamwork product line supports standard methodologies where appropri-
ate. The standard methodologles that Cadre has adapted lor analyvsis.
real-thme analyvsis. and design (described above) describe. in an unambiguous
craphical hneuace, analyvsis and design specitieations. Beyvond that, the
Teamwork philosophy 18 to provide a general purpose tool. and not to
restrict an organization's development methodology. and to support a variety
of approaches. Teamwork allows the adoption to other. non-supported tormal
structared analysis and structured design methodologies. Rigor Is maintained
by consistency cheeking and syntactic analysis.

Teamwork is flextble enongh (through teamwork/Access) to atlow communica-
tion with project control and project management methodologles without
foreing any specific ones,

20. BDeseribe how your system supports a team development approach.
(Number of stations/users).

Tenmwork provides shared access across a network “to the project data hase.
[T moainiains concarreney and loeking for multiple users sharing the same data

base. “The nmber of stations/users Is o lhmitatlon of the hardware plattorm
and operating svstent, not the Teamwork soltware,
10

) '\.”\ '*‘\ "I'\-‘W- .
St e

e
‘ '\»' Ll

A, Y

v N WON
o
¥ } MW

v
Yy
"
3 3
(‘ M
o L
NN
.s: Y
b
'\
| t 21. Describe how your system supports design trade-offs.
S
Designer creativity s supported through the user interface and versloning
\.. \‘l . \] Al la
PR capabilities of Teamwork. The graphics are done on a high-resolution
s - bit-mapped display. with very last response tlme for the creatlon and editing
\ (of dlagrams and text. This losters deslgner creativity through exploratory
AN analysts and design. The versloning capabllity of Teamwork makes It easy to
Ve) n .
A araw dlagrams iteratlvely. and evaluate them as the deslgn is being bullt. [t
o™ <, is easy to redraw and re-edit diagrams and text.
R b
K \. \i
29, Indicate the range of problems to which the system can be applied.
-’ :1_
LN The range of problems to which Teamwork can be applied Include: embed-
:~3 ded syvsrems. real-time process control. information processing.
.ﬂ
‘\.J "':
o~
'y rt 23. List the names, addresses, and phone numbers of five (cust,omers) major
o users of your system.
N Gary De Gresorio
) Notorola
' D 1303 East Algonquin Rd,
o schamburg, [60196
.
S Mre. Bob Elston
S Eneineering Nanager
b - U
WY Boeing

) L P.O. Box 3999

<eatfle, WA a2
L~
-
b Mre Dan Pawl
. Natnaeer of Soltware Development
—_ e [.ear Siecler
-. . :
. “, »
oo N, Tom Weaver
SRS NMeDonnell Donglas
SN) - N
NP Niuclenr Technology Programs
!; Astronanties Division
:‘_&' o St festiss NIS 63166
J\. .(:\
""'
L]
t " A
%\ N
B
)
N
.‘
AT
.
o
-
N e 11
U -
<
1N

%
s

o)
<y

o

“~

o«
. N, w':\i

.
v
-
J
J
.
¥
[
»
3
3
G
.
>
A
Y
©

“
¢
‘5?3
] ol
o ?’
o i
0
3
¥
N -
N L%
3
\‘, <
4

L)

-y

. .
o
A
SO
N
\.I
gl)
!) h
- I
F. - .
o
S R
(RO
- 2
3
AT,
3L
i &f\ g
A "
‘ ' v - [
' ".:_ Feledyvne-Brown Englneering
PY - West Oaks Executive Park
p~~ 3700 Pender Drive
G - . -
SR Falrfax, VA 22030
NN
"

ha

dﬁ
-". i
?-.'n '_‘.
Pt = .
P

ﬁ-L/{

B4 "
4 T
AP
[<. -
PR
CONC
4 .-.'- b_'
S
."1 Ay
i ‘_t
'S P
2 - » e
'CAS
MO
W Ty .
A
.hl ;;2
o
PR
v

Ray e o,
&0
:l

+

CA
o0
‘, 'H 41:'
A et
3 f. -”
18 »
St

13
| ‘\V

s

‘v

P A RAAS

TR TS ¥

hd

-~ A R AR Y e e e S N ; » WY, - . -
O N A A N NI OIS e (AN ETNG
» AT AR Y N e e T OSSN A OGN R ftrtentel

Yy ".
LN X
Ed » » - * .

Teledyne-Brown Itngineering

[

-\

;m 1. Describe how your systcm supports early detectlon of Inconsistencles,
I: closure and errors.

-

The Systems Englneering approach. together with the concept of using an

' automated paracdigm (l.e.. that defined by Balzer. Cheatham and Green.
Y IKestrel Institute), dictates that automated tools be employved early in the life
- “

- cyele (durlng the requirements and design phases) to maintain control and
'- -‘," - * . 4 h)
- v discipline on design rather than on the code and programming phase. I'he
" -f

formal svntax of the Input/Output Requirements Langnage (IORL). o syvstems
desien language, enables an automated compliation and analysis actlvity to be

:'_‘ :" performed early on the ecusuing preliminary design prior to implementation.

:: - design flnalizatlon and code commitment. This automated compilation and
\ o~ analysis activity enables early detection of errors In a cost eflective manner
A r;',_ prior to commitment ol long-term critical resources. This approach thus

enables closure. consistency and completeness checks on the design.

< I
S -:-: 2. What type of progress metric does the system produce? Is it quantifi-
o able measure of completeness?

'Y

a Once o desfen is synthesized using [ORL. specific and accurate transformation
;-: ratios exist that enable the estimation of IORL design pages lrom require-
- ments specitication paces and subsequently to pages of software code design.
:-'_. v A correlation can be made from A type. B tvpe and C tyvpe specifications
" (l.e.. trom requirements/performance speciticatlons to lunctional/allocated design
J L specificatlons to product specifications). Present data avallable 1s conslstent
"f'_'- . with and supports the ratios used for cost estimation relatlve to desizn and
‘:: rode,
. e
::: o 3. Describe how your system supports documentation, program management
‘ and control.
S
\; ‘-_i)
S Using TAGS technology Initially during system desien provides automatle
_; - docnmentation enabling integrity and visibility of design by both techniceal
; '::.; and manacement communities. The control and untque data bhase used to
[} aceess Information by development team members also ensures that informa-
.rf: tion passed to other program management tools external to TAGS (e.g..
:::' : PRONIS (PRONIS Is a registered trademark). a PO based program manade-
'_:‘: ‘ ment set of tools, resident as complimentary applieatlons software) is also
:::: - consistent and complete,

<

LY

.. 15

0

P P AR AN A T s A
J'J"J‘\J‘ J'..v'.'d'-l'-’.. ,_-ff

o P AR

S

) SMEAER 4 ‘l' ‘l' Q

- e
.
2alstaT e

™

WML

N e

«
.
s

.I
’

RN ™ o

»
.

ants N,

- .
x l. o~ -"-’

g

P

L@ IS @l

G Y

..-, ..r‘../- e '.P

)
4

4. Describe how your system supports real time design.

See answer to question 3.
5. Desecrlbe how your system supports councurrency, parallellsm.

The formal syntax of the systems design language (SDL) - TIORL. enables it
to preclsely and accurately support (1) real-time design. (2) concurrency ad
{3) paraltellsm elther independently or Jointly as is commonly found in
systenis that contaln functlons supporting sensor processing, command and
control. detection and identification. process control. network routing and
coitrol. Processing symbols such as fan-in-AND. fan-out-AND. fan-in-OR.
fan-out-OR. the controlled-AND syvmbols. also part of IORL. support 1. 2 and
3 above. The controlled-AND symbol is also used to support the real-world
computer interrupt. where parallel processors are operating. performing
independent lunctions or operations.

6. Is your system constrained to a particular implementatlon language (Ada)?

TAGS technology permits designs developed to be implemented in any
langnage (e.g.. FORTRAN. PASCAL., C or Ada). However. it is focused on
Ada and Its automatic generation because of the benetits to be accrued In
communicating information between hardware design (using Ada based VIIDIL)
and software design (using Ada as both an implementation language and a
PDL). and across various lite-cyvcele phases (e.g.. code and preliminary design
phase).

fod

7. Does you system produce Ada PDL?

Yes, Ada PDL (simllar to that delined by the IEEE Ada PDL Guidelines andd
IDA Paper P-1983) 1s produced: however. the lack of uniform and well
detfined PDL standards in the workplace requires further diatogue within the
present Ada and non-Ada nser communliy. ’I‘he Ada produced by TAGS s
fully compatible and compliant with MIL-3TD-1815A. the Ada Language
eference Nanual, Furthermore, the invnlvemom ol the professional stan-
dards oreanizations, such as [EEES as well as DoD, will be required to clearty
define the speeifies of what an aceeptable or usable Ada PDILois to embody,
The <D Ada Process Description Laneunce document, proposcd represents i
vianble noteworthy Initiative,

16

Ty S I I ' ™ "h (A AR)."v.','
.’*-r.PJ'J"-(‘.fJ‘J' PR AP AT I Il
.'..' O l (ol o L) " s & ‘ s Q‘l‘o'l"' « .ﬁ“.l .&‘ 'l‘-lq" £ AL S 3

AT

~_agv O . _gav i v ? » i A 4 < v 3 TF TR TR TR TR O TR W TR T W TV T Wy

n 8. Describe how your system supports life cycle intraphase & interphase
s communlcations.

-:: The tact that TAGS technology can be used in the requirements. design.
coding, testing and malntenance phases of the life-cycle clearly enables
interphase communteations. TAGS abllity to support preliminary. formal and

g eritteal design activitles enables viable Intraphase support. for exaniple.
9. Is your system automated, exccutable, complilable?

N\

o

The atomated nature of TAGS applications software packages on an

=X cneineering workstation enables executable and compllable tasks to be effected.
;::- ~pecifieally. the diagnostic analyses, for example. enables automatic compilation
o the resulting design for completeness, closure and conslstency executable In
- 2 real-time mode or in a backzground mode.
W
10. Deseribe the graphics support for your system.
- TAGS technoloey contains strong components jntended to assist the user in
visnalizing saeh design concepts as parallellsin and concurrency. The TORL
- design syvmbology eraphics. mtended to assist in the synthesis of design and
" architecture. are a part of the formal syntax that is exccuted and compiled.
The [CON's and kevboard alds presented on the screen «uring the edit mode
:"_'- are Intended to assist the user In capturing design embelllshiment rapidly and
effectively. The electronte maonse. electronically displayed switches and
multiple windowing capability are intended to Iacilitate access, review and
' edit fapetions In a tlimely manner.
.
~ 11. Deseribe how your system supports concepts of:
S
) -Itarly prototyping vs. rapid prototyping
-Software rcusability
-Information hiding
) -P’ackaging concept
.- -Abstraction
j.I"_' ~Typing
-Generies
-Iivolutionary development
v -Macros
-Data rows
. -Control fows
L
:
"
Al 17
be

AT ICNENE NN - oy ' > O R R S R -
\.’x«‘\;\; e OGO \4- e :’ el .- N .»\.(\.r ~ -)~ J-"&.\.r ,a.\' ,_.r\w' .-g\'.i-\w,~ .h .r‘,r,&a .r‘.\.\‘.r\ .\\J‘ e N _.
. 3 . e N » Ld A . - L) » »

o R T R R W Y W U VWUV T R U T Ty g T T Uy e

.

N
EAE The TAGS simulation compiler enables the generation of both early and
\:'-}l rapld prototypes. [nitlal designs can be rapidly prototyped by ldentifying

macro or generallzed timing requirements. As design and timing refinements
are made or subsequently established and ldentifled. a more complete higher
contldence level prototype can be generated.

The TAGS Schematle Block Dlagrams (SBDs) support both Information hlding
and the packaging coucept as ldentified In MIL-STD-1815A by enabling the
fdentitication and isolatlon of independent packages and processes. Once
These entitles are identitied., they can then be subsequently embellished upon
At o ater time bur within the context of the characteristics or parameters
initiaily established, it known. >BDs enable the identifleatlon and compart-

mentatization ol funcetlonallty at one level. while the related Implementation
. and elaboration ean be altected Independently and subsequently at o lower

':‘ level by another tndividual.

(g

RO A

o The hierarchical relationships and nature of TORL supports the varions levels
~ and o concept of abstraction required to represent and manage design and

. ~oftware, The different parameter tables contatned within the langnage (i.e..
_'.\f. [OPT's, P77, PPTs) provide the capabllity to define various data types,
1 ;;j <catars, strines. Vectors. Matriees. Logleals and Sets are a partial list of
.\,}‘_.::ﬁ tvpes that can be represented. These TORL features. sBDs, parameter tables.
W predettned processes and others also support the definition and declaration of

sefterios as owell. (See the ORI lanonace reference manual for further
slaboration).

"
l"A

oy
’

< TAGS technology is particularly effective In supporting evolutionary develop-
7

ment by providing the eapability to coexist with different. immatare and
incomplete desten bhaselines. The tool sulte provides the capabllity to

O

::: individnatly eustomize and complete sibsystems and components without
{ _,.:-f perturbine completed design modules, The configuration management
::::-:j applieations package enables the maintenance and integrity off multiple system
:'_J::: baselines and iterations. Transitioning form one desien baseline to another s
® Foveibitated.,
.
‘;_ \nother ot the TORE formally delined syvmbols is the Nlacero. 1t <shows all of
,*-" the Trehmmental input/outpnt events or represents o combinntion off funda-
"'::::;: mental 7O events sdefined by a <ingle inpat or output syvmbol. By condens-
9. e O Tnformation in this manner, the amonnt of detail in o diagrant or
:" desien s oredueed Stenitieantly and becomes mmore manageable, Naceros oare
:::.:' s primarily o pepresent the complete transiisslon ol data. rom nitiation
':':". S eontaet Lerween 1wo sides ol o Interfaee to acceeptance of the dotn
:-_, cocotved, TThey mny dnelode the Dne protoeol ased i transmitiing the ot

e e ORI e el o tarther elaboration,

®:

LY

A0 2 e

WA

v h8S
»

P
y

18

‘.\\‘ LM

P AR
; .’\?'l_-‘..! Jl“

3

LI N A s
R A VA ’\.‘f\
N p AN .\' A Nt N a n de Ko N

v
Y
2

R,
'

Ll_'.l'ﬂ‘," s 8 B

—

The =chematic block dlagrams of [ORL enable a precise. formal. complete i
compilable representation of data flows with assoclated functionality and
archltectural representations. The SBDs also Include all Internal and external
data and parameter passing with the assoclated structure. Another compll-
able representation. the data structured dlagram (DSD) provides a graphic
representation of system data. The tabular DSD describes physical data
oreanization and storage allocation. The form DSD specifles a menu or
report tormat (Le.. a graphleal format statement). The plcture DSD displays
a Jdrawing as oa reflection of data tunctions. These features also allow the
soneration of o automatie data dictionary.

The Input/Outpat Relationship and Timing Diagram (IORTD). a part of the
rormal ~yvntax, = used to represent overall control flow for associated data
ow dincrams. TAGS allows Immedinte and automatic access and comparison
S all syvstem dara and control tlows to provide design visibillty.

12. Is there a paradigm embedded In your system? [If so, describe it
brielly.

Tiee Balzer. Cheathoan, and Green automated paradigms as deseribed in
Computer, November 1953, [EFEE publication. are embodled within TAGS
feehincloey as well as TBES own. These paradigms stress eariy detection ol
proebloms e o the requirements and design phases), and the abillity to
cenerate hich contidence prototypes via auntomated tools coupled with
ety aned ddesion repeatability tor consistency. These paradigms <stress
doctmentation of ddeslen as oo natural by-product to enable desten aned
peonirements mnintenanee versius the present day approach to sy rems
Jevelopment of code madntenance. The [atter 1s undesirable because of Hts
therent cloracteristie to destroy strueture and insight as o Manetion of
matntenanes and riine,

Tlhese paredizis also enable classieal and evolutionary development to coexist
WL protorvping dnltintives that provide svnercisme within the lile-cyele. ennble
Porter homdware soltware trdeols, and reduce s the amount ol time (Le. lite-

et peaquired o sv=ten readization.

13, Deseribe the external tools with which your system Interfaces (Lool
compatibility).

\ronanber cxteranl Tools e developed by other vendors) ean be
et g rpesrated with the TAGR tool saiter N postseript intertiee
Cher ey directiv o inrerfaee with o such tools s the Nlentor Graphies
Coocnrons o Coanrors e NHE-STTD-s AN Toancanee BRelerenes N
19

- R T i AT S AT AN S S R L I A PR SR I S R I T AL TN -
B T e T R N T O i N N e AR o) . e e
R N AN A A At P e Pt P 2t

e Y W T,
T

. ,.
[RSP Ay

-

PR A A AN OO s

-

adhered to shall enable code produced by 'AGS o be compatible with any
other Ada DoD valldated software development environment. A oumber ol
other proprietary TAGS products are imminent and under development that
will enable a vartety of other tools to bhe directly Interfaced with the
applications packages. Current eflorts are underway 1o Integrate TAGN
techinoloay with specifie requirements tools of NASTIEEC Corporation. It is
THE polley 1o Intertace with existing viable tools that extend TAGS ntilitari-
an value and extensibility rather than balld 1ts own. [his polley enables the
company to focus on unlque tool development activities to turther increase
e viabllity of TAGS technoiogy. Apnother anticipated standard. . enable
fnrrher el extensibiity, s the VHSIC hardware deseription langunge (VHDIL)
nterfes conpletion.

1't. Describe how your system supports hierarchical decomposition and flow
direction (topdown, bottoms-up, both, cte.), architectural perspectives (designer
creativity) and object-oriented design.

The TAGS formal development methodology is based on sound svstens
clcineering principles that ean be characterized by tour basie activities:
-Coneeptunlization
-Detinition
-Avsis
Alloentions

The innee enables hierarchical decomposition and provides for the initial
Llenrittention of o syvstem in its environment with all associated jnterfaees
irepe-dhown,

Hewrever, since 'TAGS technology s intended to provide desivn {recdom and
inevaiiveness on the part ool o designer or engineer. lateral departnres and o
Pottons-npe approncht are not o precluded vhere user experience e expertise
S beorelledd upon. Thas, control flows at any level can be andertaken
With slepartures into the world of data flows or vice-versa without adverse
Smirarions o desicn consequences. The technolosy enables funetionality 1o
et ith arehitectural representations aned design tormalisms in oan o cftelent

Lraled neiiner,

15, Is yvour system supported by formal syntax & scmantics? Deseribe
brielly.

oo e sones ond Bneennee cipnhedded withiin TGS Teehmolo oy s e

N e E SRR R AL AR N EURS TR R TS RTTR N X EAA AN

S

1

e

16. Outline typlcal utilizatlon costs for your system (cost, of acqulring, using,
tralning, & malntaining It).

A single and complete TAGS stand-alone node (software) with all thirteen
deslgn and conflguratlon management tools costs $16.250. However. Individual
user requirements may dictate fewer tools that can range from a low of
$2.500 to a hlgh of $5.000. Network (8 nodes or more) llcenses qualify for
disconnts of up to 50Y%. The simulation compiler (prototype generator and
tming analyvzer) costs $12.500. Trainlng 1s tncluded with the purchase of a
single system for two individuals, The TAGS complete and basle cotrse is
10 hours long.

The encineering workstatlen. an Apollo DN-3000 Is approximately $10.000.
Hardware and software malntenance for a single node is approximately 104
of purchase price. All hardware and software can be purchased separately or
a0 turn-key system.

17. Indicate the hostability (measure of degrce of portability) of your
system.

e present hosts off TAGS technology are the Apollo computers and the
DEC VAN (VAX s a reglstered trademark ol the Digital Equipment Corpora-
tion) weries. Additional hosting Is underway and will be made available
~sinbject to nondisclosure agreements.

18. Describe how your system supports interdisciplinary abstractions/represen-
tations (l.e., systems engineering, software engineering, hardware cngincering).

The systems englneering methodology embodled withlu TAGS technology
enables it to also support software and hardware design as part of the
natiral proecess of synthesis requlred to bulld syvstems. Thus TAGS
technology and tools are the same ones used to support the hardware and
~olftware engineering activities, The strength of the approach in developing
an o integrated deselopment environment, s severallold: 1t permits viable
hardware /software teadeofts and timing analysis: Insures cood communieations.
information exchanze and conslstent documentation between hardware and
software: fosters uniform training and tool innovation between the varions fife
cvele desten and development members: insures continued life-cyele tool usace
from requirements and desien throuch test and maintenance,

21

o I PN e T A S S A OO
A s RSN ‘J-\." \‘:. {s
De sl W ., P 8 A A WSS S A L L L

A\
LA MY

NN
RN
— LSRN SR Y

]

s
LA

lr'
v
Y r e

2

AR
BARNAN

EE D
(oL
S

oy
P

s

o

1@ ., ._"._".; b
® “‘l"& /I.l"l.. .

PN
Lt ('_r":‘.r‘l/‘

R g

o
10

«
LN

!

ER R T

K NS
PO PR

TAXAS
¥
2,

@

iy
Ly

[SE AR

[N

.\'r*v'-\

19. How complete is the methodology - do its principles embody

-A development methodology only
-A deslgn methodology only

-A programming methodology only
-A project control methodology
-A management methodology

-All of the above

The intent of TAGS technology Is to support and embody all ol the
reterenced methodologles. However. 1t s recognized that to have a complete
methodology that accomplishes afl Is difficult and does not currently exist in
a mature and well doecumented tform. Nonetheless., Teledyne Brown Engineer-
ing feels that the TAGS technology approach taken currently satlslies several
of these and complements a number of others.

The techhology currently provides o development. design and programming
tpartial) methodology., It 1s also compatible with several structured and
oblecet oriented approaches (i.e.. enables one to design and develop with
TAGS and implement code traditionally at the user’s discretion). However.
invocation of automatic code generators and prototype analyzers can be
expected to emphasize deslgn areas previously ignored or deemphasized (e.g..
code and algorithm optimization. design tor reusabllity apriori).

Presently a number of software experts at Auburn University, Jersey City
State Collece, and Georgla Institute of Technology arce presently rescearching
and evaluation innovative programining methodologles and TAGS in their
efforts to increase software productivity.,

Additionally, 1 munber of companles that have tegrated TAGS into their
environments {i.e.. ag the basie design engine and data base) are developing
project control and management components In efforts to establish an overall
methodology that satisties the eriteria for completeness and extensiveness of
methodolooy, Teledvne Brown Kngineering is one of these companies. By
intecratine existing management and projecet control tools with the present
TAGS enviconment., TBE feels it can ddentify an existing environment that
e he used to o support systems of the magnitude that SPIO and NASA are
apdertaking, These integrated “complete™ environments can then be used to
develop more mature mtellleent and enhaneced tools,

o g g a

E 20. Describe how your system supports a team development approach.
. (Number of statlons/users).

By taking advantage of the networking capabllities offered by vendors (e.g..

: Apolle’s Domain network approach). workstations can be linked together to
support large design teams. The TAGS technology and software does not

g contaln limitattons on the number of users. Some present TAGS users have

networks in excess of 50 workstations. Typleal network rings are conflgured

o in multiples of eight workstations. {ndividual company requirements and the

' . . - . .

:.(' need for sensitive compartmented information have been found to dictate
nerwork sizings rather than technology constraints at this time.

N

21. Describe how your system supports design trade-offs.

“ See uestion 1N response,

‘_l_
The technology with the simulation compiler, can be used to generate

o prototypes in support of specific pertormance requirements. Less than

- satisfactory results require only that the user izolate modules or subsystems
that require further optimization or timing changes. Once localized changes
‘i are made, the prototype can then be simulated agaln and new output data
analyzed. The latter is an iterative process that enables thimely and efticient
hardware/software tradeofls to be effected.

- 22. Indicate the range of problems to which the system can be applied.

! TAGS technology has been emploved across a wide range of systems and
problems. Svstems that include electronie warfare sensors., command and
. control, aijreralt, communications, logistics support. process control., weapons
-:: real-thme aleorithms. management information syvstems, boanking, architecturad,
i DoD and non-Dol) systems have been destgned using TAGS technolosy, The
svstems engineering approach contatned within TAGS is o broad-based
methodolooy that can be applied across a wide range of problems. Specifie
TAGS applieations of tnterest to the SDIO olfice are the Alrborne Optical
Adjuner (AON) Satellite Intesration Pxperiment (S145). and Natlonal Test Bed
- Roekwell 1team). Several thousand TOR]L deslen pages currently exist on
thiese ~yvstems,
-
It
23
K
>
e T S e T AT T T LT T L e T T T e T T T N L LN T T N U N N S S TN LT 0 s i 0 y
Yoo ,-._,-.‘_-.,x__-.__-.: o T L A I ~.'f_ A U R G LG LR L S

{

\
|
)
A
°
\'
" v
T
o~
.:,
._;
('- 23. List the names, addresses, and phone numbers of flve (customers) major
N users of your system.
Y
;'_-:j Boeing Aerospace Company
;.:- 1001 Southwest, 41st Street
" Renton. WA 98055
r. 2
,\.* Boeing Aerospace
":} P.O. Box 3999
N Seattle, WA 96121

%

Bob \Welling - (206) 76-1-060-

‘:?_-'. sperry Corporation

oy Mail Statlon 104

- Great Neck. NY 11020

o Charles Pace - (516) 574-9261
e

o Stemens

O D AP 52

‘\-‘_'.' Otto - Hahn - Ring 6

\"-- I’.0O. box 830951

1 D-8000 Nunich 83

[Federal Republic of Germany
Peter Hover - 49 89 636-46065

NS Ine,

600 Naryland Avenue, SW
Siire 65935

Wiashington., DC 2002

Juek Ridgway - (202) 551-6161

. AP

7

v .,‘
v .
ty Ty b
222

Y
e

&
o,

Jersey City State Collece

2039 Nennedy Boualevard

Jerseyv Citv, NJ 07305

Dr. Philip Caverly - (201) 517-3291

e v t

s 8 -
3y ¥
Pt B ol M et

ROAPEE it

MRS
\l‘Il‘

® 24

0

M‘b\. be l‘

\, .- . - n
,f, o P, o . v 3 '\. »
RSN, RS RNANRR s R

AN
Lo

)

<N

a

A

o, S,

Pl

S 4

-
L r

y

A A

&

-

[

.
.* -

"

ey

SAnOnE (_

8!

l."
AN S

L]
LS

P e

L)

V-
I."
" 4 -

e e e

(2

Lo
o

v

Nl

B

"\ J . 'l"' 'l ,l 'l {I .’I.J

x,

Y7022

.

‘."’&\'\.}

e

I'

v,

N Y

ﬁx

u-.r_.

\J\J T

Advanced sSystems

Architecutres
Johnson Flouse
73-79 Park Street.
Camberiey.
surrey. GU15 3PE.
U, K.

25

N

L) !wl -

:'k.\ N.'\- -V--J‘ \J;‘

cJhh NN

\'\-

~ ‘ .

o]

W

*\ Nvﬁ \¢\ =

8

\ \

J‘\..

A

5
YN

x>

J ..) (R ol baf U > Iy O B sk Sal ah sol van AR ol

i .\': ‘]
D :-": -

.-

‘.\\-
SR

SOOI Advanced System Architectures

b
i.. -

O !. 1. Describe how your system supports early detectlon of Inconsistencles,

DN closure and errors.

.
» 4 & Y
T e

2 st 4N 8

. Auto-G supports detectlon of Inconslstencles, closure and errors In the
followlng ways:

o o
.
-

0

v
..-: > 1.1 By Visual Inspectlon Of Auto-G Documents.
2
ot . ‘ .
; The strict formallty of the G/T notatlon guarantees that the contents of
=y each Auto-G document can be unambliguously Interpreted. If system require-
- ments are expressed using Auto-G. the risk of a designer misinterpreting
:j.: " these requirements I1s minlinized: It a system design Is expressed uslng

_\:} o Auto-G, the functionallty Is hnimedlately vislble. Any discrepancy and
:'.-: v Inconsistency between requlrements and deslgn i1s therefore immedlately
; - apparent.

A ;

NI 1.2 By Creatlng Only Syntactically Correct Documents.
AN T

\:_\ ks

:_: Any attempt to violate the syntax rules Is an Indication of some Inconsisten-
N ¢y. Using the graphical man-machlne interface, the user cannot create
, D Invalld syntax; using the textual interface, syntax Is checked on request. and
:_-::' Invalld syntax Is not stored as a valld document.
B~ .
AR . .
AR 1.3 By Semantlec Checkling.
b

;) L Auto-G Includes an automatic checking function which can be used to check
J-_'{ e the valldity and completeness of a specification or design document. This
W functlon performs a series of semantlc checks which together constitute a
VIR complete statlc analysis: when the checker Is run It produces a detalled

L s .

. report on all functional aspects of the document(s) belng checked.

o

,,:__ L The same constructs arc used hoth to specify and to design the system.

:\ - The checklng functlon warns of any redundancy In the deslgn - l.e. whencver
o

“ .. varfables are not accessed, procedures are not called. varlables procedures and
S .,;' templates are not used. Input parameters are never reall or output parame-

. ters never asslgned to. In addition, the checker warns of possible cases of
::'-;f nnintended Interference between functlons which have an unspecltled sequence
',x_, " of exerntion. :

-l

ol

P .

N
S

g 27

._\. -

o

* !
.{.\

0% 5 4
LA

.

R

el .:q

A specification is checked to ensure that there are no loose ends - l.e. that
all the Inputs and outputs o0 the system are related to objJects In its
{ ¢ environment.

¥
KRN
)

e,

‘oS

".:}_'.f A design Is also checked to ensure that there are no loose ends - e.g. that
N the behavior of every functlon Is conslstent with 1ts Interface deflnitlon. The
:::": checker detects any processing that can never be executed because In practlce
v It 1s unreachable.

‘»,.:-",

S As well as lts semantic checks, the checker warns of the use of any legally
'::'._':: valld design that could nonetheless compromise the rellabllity of a system e.g.
::- the use of data shared by concurrent processes.

7 or 1.4 By Dynamic Analysis Uslng Auto-X.

b

_,:: To prove the completeness of a requirement, a specificatlon, or a deslgn, it 1s
j:-.:: not sufficlent merely to use a tormal structured and quantified approach.

.\- Dvnamic analvsis and prototyping are increasingly recognized as lmportant

7 additlonal alds toward assuring the consistency and correctness of the evolving
:_'t‘..:: schema. Auto-X Is the tool which provides this support for Auto-G users.
The objective of this tool is to prove that the concept, specification or
deslgn 1s workable In the dyvnamlc sense and to provide the necessary

" parameters. If required. for sizing the target system.

.}:}:: The functional specification of a system Is a definition of its functional

;:}::: components and of the Interaction that takes place between them. The

j:-.:j Functlonal Exerciser (Auto-N) Is clesigned to operate upon functional specifica-
5 tlons and system designs structured in this way and which have been

formally described nsing Auto-G. Auto-X functions with systems which have
been deflned In this w=v, by Intercepting the slgnals (messages) that have to
he passed between such objects. It is thus used In a similar manner to the
cireult designer’s oscilloscope. relying upon the Information passing across an

A

B
.

‘l
'l‘l

Ty
% » Y
<, 'v‘

S

~ Interface to verify, and characterize, the operation of a functional element.
e
o

'_.-:. Using Auto-X. functional specifications can be modeled: In this way. the
h". . . i)

- implleations of a complex set of requirements may be demonstrated to the

[
TR

l;l

customer who can then confirm that the specification Is complete.

l*-.

.1_','. A consolidated Auto-Goreguirements specilication, In effect. represents o

'f-:": formal environment model against which the assoclated system design may be

-"-:-,’ checked for conslstencey. Throughout the deslgn stage, Auto-NX may be used
Lol

L to model the design dt=elfs the design model interacts with the specification.

-,". . »

Y and in this way the suttability ol the design can be confirmed. I the

%g\ desten i not completed to the lowest level of detall. the destgn can still be
-,

0N

A

B

-~

=

s,

LY 28

e

IS0

ey,
—L.’.:'_

e R

-y

~7

"

v
»

=
L

PN

r

.
PR
«
Tate

ro
£y

» e
g

"-',‘\' :1

"\‘ "' . 'I

b

- ',4',

'l

<
'

PAZ I

modeled using the Auto-X but the Auto-G checker ldentifies that there Is
further deslgn work to be done.

2. What type of progress metric does the system produce? Is It quantifi-
able measure of completeness?

The question Is answered In Sectlion 19c.

3. Describe how your system supports documentation, programn management
and control.

The purpose of documentation is to record Information about a system In an
orderly manner In order that people may understand the system elther to
bulld it. to use it or to malntain it. The outputs from Auto-G (either
craphical or textual) are an easy-to-understand formal representation of elther
the specitlcation of the system or of the system lItself: quite silmply. Auto-G
svstems are largely self-documenting. The Auto-G database has also been
linked to other tools including one which generates documentation to DoD
standards e.g. DOD-STD-2167. Documentation procduced directly from Auto-G
does not eliminate the need for user manuals and hardware malintenance
documentation. In additlon, 1t is useful to record the critical decislons that
affected the design: Informal comments within the the design tend to amplify
WHAT 1s done rather than WHY.

Information stored by Auto-G is stored in Auto-G documents. Within the
Auto-G database, each document has its own physical flle. These documents
can be arranged In a hlerarchy to reflect the breakdown of the design phase
Into a network of deslgn activitles. Each design actlvity can then be
worked on by an Indlvidual or by a small team working closely together.
Estimating how much effort Is required for each ceslgn actlvity can only be
done empirlcally: with a set ol effort estimates, critlcal path analysis and
resource schedullng could easlly be done based upon the network described
by Auto-G.

Auto-Gooean be linked to another tool, or can be fullyv integrated with a
project support environment (PsE) which provides contiguration control of
Auto-Goodoenments and of other documentation.

1. Describe how your system supports real time design.
Auto-Gosupports a semantle model which is capable of representing any
funectional concept, however complex, In a way whleh 1s clear and nnamblgu-

ous. The formal G/T notatlon Is able to describe completely all functional
aspects o o real-time systent namely:

29

' M T e e e L T T e W N T '\’\ P e e W . LTS Mok 7 " »
o, PN A A AN A e WA P o ()
."‘. B! "“.-N.h\ e ”P - ~ \ W " .0 X} & .I.' L) .t...!..’! L A .0.‘.e.l u.. !"‘.o !.' » .. () I' R) &..:‘..!.. » I.. . W

L)

)
¥

"

System Strueture
-hlerarchy
-Independent processes
-common procedures

Process/Procedure Behavior
-local data and data flow
-internal control flow
~-transitions between states

V9
_\'::- -data areas -processing algorithms
" ' Communication Between Functlons Configuratlon Management
. -messages sent and recelved -modular construction and test
ey -external data accessed -parallel design activitles
::r -common functions utilized -system engineering
-\._,‘: -cdletalled protocol descriptions
A Other features that make Auto-G partlcularly appropriate for appilcations’ to
‘_*::: conmplex real-time computing systems Include the formal representation of
-_\.:'_'_ time. and tull support for generic design templates.
-':: 5. Describe how your system supports concurrency, parallellsm.
AL . .
: 5.1 Auto-G supports Concurrency.
‘-:‘
':r,j The Auto-G semantic model postulates the whole of a system and its
' environment as a set of Independent concurrent processes that, fundamentally.
x operate asvnchronously. They Interact/communlcate only through the passing
_tj- of messages (called ‘signals’). Thus Flgure 5.1 represents a system which
v:-jf contains two concurrent processes, and which Interacts with two types of
:::j process In 1ts envlronment.
-

\When processes communicate, It Is not necessary for the sender and the
recelver to be svnchronized: the sender can dispatch a message whlich may

18

¢-_

SO not be attended to by the recelver untll some later time. Where functlonal-
-":;- v required, svnchronizatlon between two processes 15 represented by a

) ';: protocol Involving an exchange of messages. The G/T notatlon therefore

L supports precisely the bhehavior of processes In the real world.

‘s

' 3.2 Auto-G o supports Parallellsm.

The Auto-G semantic model describes the behavior of a process as sequences
v. of aetlons which may be triggered by varlous conditions or events. The

- G/T notatlon allows the deslgner to distingulsh between actions that must be
o performed in a detintte order (Flgure 5.2) and groups of actlons that need
ot he performed In oany particular order provided that all are completed

- hefore the next netion Is started (see Flgure 5.3). A deseription ol behavior
S

s ¢ 3 ¢ &
Py
B

-
‘.l_‘.,‘.', » W &
(V%)
o

Iy

s

2

ol
4

[-

%
e £
STVYNOIS VIA ONLLVDINNWNOD bl
L&
S3SSAD0Ud LNFYUNINOD P 1°G aan3diy 2
Iy
s
JeATUD ’ :
Aetrderg Aerdsrg (WO .aﬁ
S Woa WO Q
eBuscon
{ou3uo) [- W], T.T Je 8N
Aetderg Teuue@Ixy WD
z Aﬁ[
weisAg e o5
JaAtTJd [
Ae1dstO ﬂc wogueuie st ALy o
o) w _ u?
™ W
%
NJZ
ebesson eBossoW -un .
10J3U0D AetdstQ A
s
‘ -
,4.1
LT
sl
Ny
T Y
‘WeICAe eyl JO 8JEsN AQ WIlcsAs 8yl O mﬁ.
JUSE s8beEGEW [DJIUOD JO suUReW AQ LS
POTIOJUIUOD BT UOTIRPWJIOJUT PBARTOSTID .u.
JO 18ABT OY) *AQldetpP @ uD sefBessow _¥
980U} JO BIULIUDD BYIJ SARIJEID pue § 4
23uNoe TRUJOIXEe ue Wou; cobeseow s
AQTASYTD SOATEI0U UDTUM WOIEAS JBATJO . 5,
ARTdEI(] © SO0 MEBTAJOAD IUBWUODUJTAUD .
[
TA703 ...“.
5
<
s
< A
_-u
[N -
by
a5
s
-f y
.f\ |
LS Ly LR P it D Lo I I v e . F et *s e ') y DA .
-;n.,.s.t. -....\ RS b S ...Nr PRIare rﬁ -- st T.. KR o ..v-.. \JVJNJ g - v, Il,..' B
o
VYWY S W _ b R AP I. AU Natataa o SRR %y 7 ks S o ¢ A Ai s - ~, - - s Al - pe o

S ai g a Arin =8 Sl Sall Vol VR4

Ca Ay

>
S

True t lear
nitialise
Oisplay rosshalr

‘@

A7
L
RN

s

..

i

AN

lear—=== =
Clear ™~

Display Oisplaypcestination

o]
KRR NS |
¥

M
N

i3
» %y

e

AN

VIRA

v

.
)

«

resshalir—— = = = N
Otisplay ;
Crosshair Oisplaypdescination

J

54

s
v
R

.

v v e

PR
e

PN e

.IJJS". A
(7]
Mo d
o
J
a
(<2
<

SN
f'l‘l;: - "‘."’ .‘ .
-

Figure 5.2 : ORDERED ACTIONS

t.} .)
A

|

1
n

P, 'J‘ »

alala s

Nt

LS

‘A

'
LS S

N <

Vv |
CCa eset Priority CCe Reset Priority

Limit tQ S andg Limit to Maximun

Range Limit to and Aange Limit
Mexinmum to 300

a
«
I
o'
.

o
-,

%)
PELS

3

o

‘l ‘i " 'l

Reaet
Priaority
Limit

A R

¥ (.'

7
X

A

‘

\ chctioo L
- Rsnge

Limie

Figure 5.3 : UNORDERED ACTIONS

VU
P AP

.

BAV ol ol ki - 3% LB oFR U Y oW o¥]

‘:}: which uses the concept of unordered actlons ldentifies those parts of the
destgn where parallel processing could glve a faster executlon.
: E 8. Is your system constralned to a particular implementation language (Ada)?
b
: - No. As a free-standing computer alded deslgn (CAD) tool, Auto-G can be
; N usect to produce a proven deslgn that can be Implemented manually in any
language sultabie tor real-tlme systems.
5
) The Auto-G database has been linked to other tools for use during the
., implementation phase: one such tool I1s a text edlitor which guldes program-
:;; mers coding in JOVIAL: another tool generates test data automatically using
i ~ as a basls the Interface descriptions within the database.
::'f It a toolset Code Generator Is used, then 1t Is possible to generate object l
o code dlrectly without the use of any lmplementation language.
N
t"; 7. Does you system produce Ada PDL?
) Auto-G already produces various codes directly from a design (e.g., Ada. C):
;l‘- studles have shown that other codes (e.g. occam) could be produced relatively
easily.
l The G/T notation permits assertions about the design to be embedded within
the design. Just as Ada PDL is embedded within an Ada program. Auto-G
. does not at present produce Ada PDL, but 1t could be extended to do so 1f
required.
! 8. Describe how your system supports life cycle Intraphase & Intcerphase
" communications.
'{5 One of the major headaches In systems development can be the use of many
i notattons at different phases of the life cycle. ‘Whenever Information has to
be transformed from one notation Into another, there is the danger of the
; loss or distortion of that Information. particularly when either of the nota-
tions isn't tormal. Anto-G has a complete formal notation that can be used
at every stage of the syvstem development. The benefits ol this are three-
fold: Testlyv, transformation errors are eliminated: secondly. the use of the
- <ame notation thronghout the life cyvele makes It mueh easler to compare the
. catpits ol ditferent phases: thirdly, the use of a single notatlon within a
:-', project reduces the learning curve for the development personnel.
'
.’:
o
s
o 33
Pl
‘. \. - b ey
oy .' ./ .' r\.r J\)\I\f J-.J-‘e.‘-'

AR RE ah Sl B CL R LY

M
L}

’

'1:-:: Flonre S shows the differences between the successive phase of the lite

.::‘::'_ cvele, The tollowlng paragraphs describe these phases and show how Auto-G
) factiitates the ransttion from one phase to the next.

-

AN Auto-Goonaturally obllges the analvst to take a structured approach to the
:::]'_: nnderstandlng and expression of a requlrement. He begins by using Auto-G
e to eapture Informatlon about the system as It 1s seen from a number of
-. different viewpolnts., Initlally, what s known about the system from one

4 viewpolnt may be Imprecise or amblguous: Auto-G Identifles these uncertaln
-:'.‘-'_A areas so that the analyst can request clariticatlon. Although the information
}:::-_ captured by Auto-G 1s clear and unambiguous. it Is likely that different

"'_‘ viewpolnts will be Inconsistent with each other. The Auto-G notation makes
W It easy to ldentify where the requirements of different viewpolnts overlap. and
N where one viewpolnt disagrees with another.

1:5-1:_‘ The requirements capture phase is ‘tollowed by an analyvsis and consolidation
"-:'-'_-: phase. During this phase. the analyst pleces together the plecture from the
:':::' different viewpolnts, and refers to the users to resolve the Inconsistencles that
Qf are present. Auto-G enables the results to be checked automatlcally for

s consistency. and Auto-X enables the lmplications of the results to be under-
:::'_:: stood and agreed with the users. The output from this phase Is an agreed
—\3 complete formal description of the interface between the svstem and 1Its

‘N environment, and an environment model that represents the performance
(oriterla for the syvstem to be accepted.

__-’

:.':: Futare releases of Auto-G will provide automated assistance to the process of

Identifving matually inconsistent viewpoints and of consolidating them into o
consistent pleture.,

3
.
]

GO

<5

]

A syvstem may be doing many things at once: in the design phase. a
technigue off tunctlonal decomposition is used to Identity functions that cannot
be performed concuarrently. Anto-G enables the deslgner to represent
explicitly the fundamental timing requirements and to arrive at a plausible

P N A
oY
R
Voo

"
e te]

a
.
PLAE
st
.

-h . I3 &) 0]
® Jdestan. The mateh of the design against the spectfication ¢an be done by
?'_._‘ visual nspection - this Is stralghtforward because hoth the specifleation and
A the desten are expressed In the same notation. The detalled hehavior 1s also
chieeked perfodleatly aeainst the specifieation nsing Auto-N: when the detalled
.-: de~ton s complete, the outputs from Auto-N wil provide an assessment of
"' the compiting resources required by the syvstem. The output fron this
N phose Is 0 destezn whileh 1s as cood s enn possibly be aehleved on the basis
S Ml dvoamite analvsis,
[, =" .
1O
5
IR]
~ 0
‘q'.‘-
¥

P A’S

NN
N AR
N e

JTDOAD AT WHLSAS dAHL NI SISVHJ I 1°8 21n31

)
’
-.1
’
s
’
RS

>
>
» N

- ‘h.‘ﬂ -

[vivo |}
N | -
=TT e &

WU3LSAS
N

{ s1001

vo1}eIVUAWaTdU]

w wiva w viveo CGMWUQ e
wo11IMng m1wy d

H31lSAS
]

nobrp ,..v N uor3eIT41Ids
T2 (124 g A..A nn
noTIIme LR '

WIALSAS l(

S1U3waJlinbay

o, . = sy . S~ oo . ¢ a. R .. -
R nl. -sv\n.-. -n-.h Lr-‘-sb,- .-'...w.. ,&.yl' " .-... ~.'. *h.-

- v e aw %

ot F . L IR - v ,r s ”
Nt LT - () -
FOVARE S A NN < . -

» ‘-‘

\

..
N
N
C Using information provided by Auto-X, a sultable architecture can be
S proposed for the target system, and thls architecture can be described using
e the G/T notatlon. It Is Intended to provide assistance tor this In future
\ releases of Auto-G. Once the archltecture Is adequately described, code
.:.::.: generatlon for the system can be made fully automatlc. Alternatlvely, the
1R

detalled design may be glven to a team of programmers for lmplementation
using a manual coding phase.

Y,

w4

)
"r:'.‘
[\ _\.’“' .
:Q Coding is followed by testing In the traditlonal manner. except that the
‘t:.: acceptance crliterla are formally deflned as part ol the requirement. If the

h -l 3

B tarcet processor selected for Implementation Is the Sofchip Processor developed
- by Advanced System Architectures, then Auto-X Is used as the svmbolic
:u-‘: debugeger during the testing phase.

-s.": '

N

o 9. Is your system automated, executable, compliable?
e

,._, 9.1 Auto-G s Automated.

The Auto-G workstation 1s an Intelligent tool which enables the user to
e develop a specificatlon or a design within the rules of the Auto-G semantie
-r-" n il

Sa. model. The g¢raphics Interface to Auto-G uses a svintax-driven menu. which
_ changes as the user modifies his document - it 1s tmpossible to create a
e document that is syntactically Incorrect. The textual Interface performs a
-:::-: complete syntax check on a document each time it Is returned to the

.{:l- database. In additlon to these svntax checks. the Auto-G checking function
performs an automatlc check on the semantics of any Auto-G document(s).
) anct on thelr conslstency.
;' &
A .
' .:Q 9.2 Awo-G Is Executable,
] >
)
¢ _\ Aunto-X enables any speclflication or design to be checked dynamically.

] Aro-N uses an executable code derlved directly and automatically from

b Anto-G o documents.

9.3 Auto-G I1s Compllable.

i A number of Code Generators will be avallable during 1987 for use with the
At Auto-Gotoolset. These Code Generators will produce elther an oblect code
I

-‘;'_'-f for o partleular target processor. or a portable High Order Language which
-

A can be compiled to a number of processors. A Code Generator for ASA's
"
- sofchip Processor (o dynamice parallel processor) s nearfy complete: this will
i‘ he tollowed by Code Genepators producing progcram text in both Nda and
§ i':'

rsi

I‘.\'.
\f:\:

fti

20 3

@ 6

o

'r'\.

".)'*- . e e e L o - -

"

P NOY s M T e N N A N L A T L e) '\}'\.;_\",j\‘ \:_-.'_'.' L e A ‘y' N

> -
£l
-

.) T,

10. Describe the graphles support for your system.

Auto-G provides two Interchangeable and complementary man-machine
Interfaces - both a textual and a graphical Interface.

The graphical Interface 1s used to produce documents In the form of G
dlagrams. Auto-G uses a syntax-driven menu, which changes as the user
modifies his dlagrams - it 1s Impossible to create a dlagram that Is syntactl-
cally lncorrect. Auto-G Includes a powerful set of editing commands for the
fast. accurate production of dilagrams. These may be entered from the
Kevboard or selected from the on-screen menu. Prompts inform the user
when the system 1s walting for further input e.g. to complete an operation of
for, the next command.

Facllitles include: Change. Move. Copy. Delete, Hide., and Reveal one or more
ltems: Explode. Implode., Insert, reposition, Scale Up or Down. and Select an
ltem.

Commands which asslst the designer to galn a clearer plcture of the context
of a particular part of a G dlagram Include Zoom In., Zoom Out. Explode.
Implode. hide. and Reveal. All of these may temporarily (or permanentiy)
adjust the current ‘view' of an item In relatlon to its components or lits
surroundings. ’

A most Important aspect of Auto-G's edlitlng facllitles is the ability to select.
display. manipulate and store meaningful and consistent subsets of documents.
These are referred to as ‘views', and can be used for various purposes. It Is
possible to have many views of the same document, and to prodice view
dlagrams in hardcopy for use In presentations and In printed documentation.
A view can provide a summary of all or part of a design. uncluttered by
detall or lower levels of abstractlon. The most Important benefit of views Is
that they can bhe used to communicate Ideas and information very effectively.

11. Describe how your system supports concepts of:

-lsarly prototyping vs. rapld prototyping
-Software rcusability

-Information hilding

-Packaging concept

-Abstraction

-Typing

-Iovolutionary devcelopment

-Generies

-Macros
-Data flows
-Control flows

Aute-X Is a prototyvplng tool with a difference: the prototype Is one and the
same as the design belne developed. sing Auto-X, the working prototype ls

not thrown away - It ls progressively refined untll it becomes the complete
detatled design.

Using Auto-G. o svstem and Its operating environment are described as a set
of asvnehronous fuunctlons (objects) coupled together via simple unldirectional
communlcation links (signals). Auto-X, Is designed to operate upon system
deslens structured in thls way which have been formally deseribed using
Auto-G.

Auto-X Is designed so that 1t can he used at every level of the design
process. Anto-N contains facilitlies for Incorporating assumptlons and estlmates
about the behavior of parts of the system. and the external world. At any
staze. Auto-N ean be used to confirm the matching between the system
desten and 1ts speclfication. and to produce rellable estimates of the system
performance. As the design of the svstem Is developed. the assumptions are
replaced by deslgn detall. and estimates based upon outputs from Auto-X are
progressively refined and improved.

Auto-N provides factlities to describe the dynamic properties of the functional
objects and the way they communlicate. The user may speclty time delavs
cansed by processing within a functlon., and also delays assoclated with
inter-titnetion sienal transfer. The user may set up signal transfers between
runctions In whieh valld random values are generated for data flelds. In
addition. the user may load the system In a predetermined manner by
=pecifving stgnal traffic distributions.

Onee these parameters have been specified for the set of systein functions of
Interest (and for their external environment). dyvnamic exerclsing ol the
svstem. ot the level specilied, can begln. Auto-X logs events within the
<vs<tem that ean be used for dynamic flow analysis. Many dlfferent options
are available to the user to allow him to verify., modify. and metricate his
evolving svstem. These facllities allow him to gather statistles that can be
tneed o <enle the real system and to infer its performance, [n addition,
Ante-N provides factlitles that allow the user to Interact with the system o
Al evels,

PRI AN
R RO
AR R

~®

A

]
kY

_‘.{'\L ? h\".:"

1S5 N

£ T
P

Once a deslgn has been completed down to the lowest level the effect of
Auto-X closely parallels the operatlon of the conventional debugger. Dead-
locks and race hazards In a structure can be clearly ldentifled at an early
stage In the design cyclc.

Once a test has been set up. It can be run any number of times. It Is
N therefore possible to set up acceptance tests for any part of a system (up to
N and lncluding the entlre system): these tests can be re-run whenever any
change I1s made which affects that part of the system.

“n

™ The G/T notatlon encourages designers to develop generalized solutions to
system problems. These generallzed designs may then be re-used efficlently

. in different circumstances.

There are two aspects of the G/T notation that are connected with design
i”l reusabllity: generics and macros.

The G/T notatlon supports several kinds of informatlon hiding.

P

From an operational point of view. the notatlon supports object-oriented,
hlerarchicaily structured systems. To describe systems of this sort, the
notation supports scope and visibllity rules that can be used to prevent a
functional object from referring to or accessing an entity deflned Inside
another oblect.

PR

l‘-“
A

[
.

From a development viewpolnt. the graphical man-machlne intertface of

- Auto-G supports a different Kind of Information hlding through lts ‘view’

N tacility. The view facility enables the user to hlde or reveal any ltem within
a G dlagram or to alter 1ts relatlve size and position. Vlew Information can

.::: be stored within the database and a user can malntaln many views concur-

~ rently of a single Auto-G document: Auto-G guarantees that all the views

are conslstent with the underlying design. Flgures 1lc.t. 11c¢.2 and 11¢.3 are
all views of a deslgn that 1s much too large to be shown clearly on an A«

page. The view facility 1s lar more than a means of hlding Information - it
Is also a powerful means ol communicating information.

s Using Auto-Gl 1t Is easy 1o deseribe any system as a set of modules, each
deserlbed within a separate Auto-G deslegn document. For every docnment,
the uzer supplies a name and a set of version descriptors that together form
an unique document ldentifter,

‘aaddiias ~ - UL oWy v 7 T aa ale SR T RTIroRTT oy AW ok r N— -

‘\,-*

\
&
NS
\J.\
N..‘
b~ L Display Criver Temalec !
SN { Cefintcion !
e
AN E
(| - ' QOT
(4 vo 100] v t ;
i Number af ~tPNT Dienley
' Sisultanecus Ooriver
AN Tracks Template
e Ceafrintcion
N !
R M 1ear)
8 - oM rossnase :
Ny ts0ley
: I aotsnllv raee :
~ - .
\) !r;v:r‘a'r:.monz ror !
. ncertace
‘!' > nale ‘
o TRACOT i
’ "
N |
N l
"
S
~
vJ‘ e !]vTﬂAC
avt : (W=l
i ' oM 1splsy
: Tetreed P rese
ol Oisp1ay as) Concroller —FOT
[} "-J_ H Coarginecar Pracess
a Y - Process ‘—rngl'
'\-'r"
'.-
I
.::‘: RACOY
' e
"
._
b Figure 1lc.! : THREE VIEWS OF THE SAME DESIGN
|

..

»ATT g
poreasne s
O

ig

> . Boms
» “ .— .‘:: 28 b
Sl Prateee
A e
L
~o _J
" | vemu
N‘.h esriAg | 30 1 - . ‘ TP leen
by oy
g0
0 P)
5 ! '
4 '.‘»ﬂ I
VR G
AL :
l_‘ lﬁ ?
9. ; |
¥ ~-of "—-’—“ 'c--un-n
“:"" : :"ﬂ" o = | -'“:::.x:.u i
b :] [i
o, - .
O : s 19 sy, W,
> - | 1O ecesetn antr
GO o st B2 . “_;-“b?- t .
v # DGy
w. !
| ' '
Y
L) "n:: (ssanner) arrn
[} -l'.
W
ON
o i
‘,' i Figure '1c.2 : THREE VIEWS OF THE SAME DESIGN
'
NN .10
“-.I- . . .
P P R TR Pt AR R S R e T S PR e A Pt n . e Mt -
B P O N O NN R N NN gl e TE A o 2 ™
2 3 ' A . - ! s B »

THREE VIEWS OF THE SAME DESIGN

Figure 1lc.3

10Jvy]

eses20Jd

<SefToJ3UQD

]
osve oY
eouUBIBSUT

L 3=AV1 % 1V) ¢

41

JOTTO0JIVUDD ' 4O 10J43U0D
—
! ALIL BN 03 1)
|
|
CL-LX L L]
AQl1OStQ i
18901 d
[T FE-]
W egec0ud
JO3I8UTPU0OD
W ARrostQg
A3tuotud WO
edNnpey
Jieyssou
Jeey
03SIa
kOU(Chﬁl
o~ac«ﬁl ®ne) uajul
ﬁl JUBWUOJT AUT
104 JOAT U0
988J3 Ae1a6%Q
Agordsy
JIRUEBO NG
Jee o
uotatutjeg
838 dwey [3 E1 N7}
JOAT IO snosue3l{NWTS
Aetdeto T — J0 JeQunN
' A (o0% o3 %)
A =
uotltutjyeg
IIAwey JeAtuO AeTdeT
1A/0100
v ‘...,.r. i PRCS, 5 My L! \n\ . v o S m. T..,......,r v -.n......

‘.h"'n u::"

.l 3] .,,"-
N

%
Wy o
o. > o't '!‘

NaF
M.

IR T e S

"
.f\.’..

-

e %)

I,‘

.’\’I
Catudtne i3

A package of modules may be deflned by creating an Auto-G ‘configuration
document’ which lists the names and versions of all the components: the
package could be a complete system, or a group of functlons wlthin a
system. Modules may be used In many different systems simply by ldentify-
ing them in the appropriate confilguration documents. When It IS necessary
to change a system by altering one of its modules, the module document s
civen new verslon descriptors - this makes It Impossible for changes to be
macde inadvertently to the original system.

Anto-G also supports the concept of packaging through the use of generic
design templates.

Auto-G provides total support for the concept of abstractlon. Usling a
top-cdown approach to specification or design, the user may begin with very
ceneral Ideas which he can then decompose Into lower levels of greater detall.
The process of decomposition may be applled to both the structure of the
system and to the behavior of Its components. Auto-G allows the designer
to use as many levels of -abstraction as he wishes untll he reaches the
‘atomlce” structural or behavioral statements. Figures 1le.l, 1le.2 and 1le.3
show the progressive decomposition of a simple system as seen through the
eraphlcal man-machine Interface.

Every objJect In the G/T notation has a type which determines what
operations can be performed on that objlect.

Every non-data objects have a type: for example, an object of type ‘signal’
may be sent or recelved, an oblect of type ‘independent functlon’ may be
given as the destination of a slgnal.

[For data objects. the G/T notatlon has many bullt-in types (e.g. Integer. set.
character-string) out of which 1t 1s possible to define complex record types.

The notatlon enables the user to deflne hls own types as a matter of
convenience. [For Instance. a single tvpe could be deflned to represent o
record structure with many [elds of differing types.

The user can detine his own ‘new’ types which are distinet from all other
tvpes: new tvpes can be used to prevent deslgn errors such as can occur
through the use of the wrong unlts In an expresslon of quantity. For
instance, by defining ‘new’ types for minutes and seconds. any Inadvertent
asstenment of minutes 1o a varlable of tvpe seconds may be detected
attomationliy.,

Loy

vy
[y

§ 42

T R TR PO M AR

- A ...‘_'J_-.-. e e
o e A o Rl K et

"Rlachna Ate A el tan "ol *aR “ad

Z
O
—
=
Q
<
[4] [] [31V} aov vou m
suodeoy -, ' N swe3IBAS sise L,
tesiado o
= n
aneg = -
€ Hvovy 5188 ¥vaIn m
>
(1]
-
J
(2
F
wajysk
S 10s =
ws3sAS 10s —
ue Jjo UUCOCQQEOU ustew pw
8Ul JO MBI AUDIAQ —
ey
s1as
)]
| &3
=
20
v,
N . e Ee e el R N T, VR B U SO WA .
AL G APAAAS - BT AR T T (0t s S o A TRE S R B e S W e pl ETTET I o Y

43

SASDAR

P PRs
IS

s

"

OEos

oy

P
A
A‘J__q
L] -
i
\J."
yl"-
NG
..\J_.,
‘n.""-
M ",
(X
{
RN RAARS
!s‘;\‘ L
A Qverview of the
RS Main Components cf the
LSRN Long Range Raagar Subsystem
e | within an SOI System
WA SCU
o
\ | LAA
ol v
B
...:. t.ong Ranges
_"'.' Radar Subsystem
oA -
v-.'{.-..'
.
A
l ’ 00s
X v
b
vt T K1 o1 Beam PFulsc DD‘:AD vl:’_y
LA = rac ng rection arm
.\,-;x, System
¥
P -,
¥ ’v\
@
At
A
'.:-‘:j- Figure 1le.2 : THREE LEVELS OF ABSTRACTION
.
-.‘-‘-.n
'.__".
A%
4 1
{
AL
Il
SR
PRl
r"'-:':
AT 00S/v1
RS isplay Oriver Syste
LY containing a Display
\"’.\ Drivar and a Oisplay
LAY and defining the
R intercommunication
.’1':*' signals betweesn
®
¥ ‘t“
) :_.\,-
A Display
b oM Oriver
hh Systeam
v
L ,
o
X L
) roo ch4
Yagy CM lear \ Clear
N -:'.. oM 01901 rossnhair ! Crosshai
splay
vf\\{ Oriver isplay Oisplay) Otisplay
J,'ﬁ_ rase Eraes
®.
. ,\'
o T VoY
‘i w14100---
g Maximum
Aoy Number of
Ly Concurrent
S Tracks
.
4
it} 44
j« Figure 11e.3 : THREZE LEVFLS OF ABSTRACTION
. .

£ s
h

g

<
'

]

5

~ Tvpe checking Is done whenever possible throughout the Auto-G toolset. A
major part of the work of automatic checklng within Auto-G Is to ensure

! that an object’s type Is compatlble with lts usage.

Every Auto-G document has a user-supplled name and set of verslon
descriptors that together form a unlque document ldentifler. This labelllng of
- documents Is sultable for enforcing conflguratlon management and bulld state

controls during the development of systems.

.
- A package of modules may be deflned by creatlng an Auto-G ‘conflguration
. document’ which lists the names and verslions of all the components. When
,

[a module Is changed, It Is given new version descriptors. To produce a
package that Includes the changed module, a new conflguration document
must be created giving the new version identifiers.

The G/T notatlon fully supports the concept of generics. Using the notatlon.

it Is possible to deslgn generallzed solutlons to problems as ‘'design templates'.

F These templates can be used for creating real objects within a system.
Values and tdentifiers used within the deslgn of a template may be supplied

- by parameters so that thelr application can be as general as possible. The

.- notatlon also supports generlc operators and procedures.

s Ficures 11h.2 and 11h.3 show the use of a template within a syvstem. In

[‘ the examples. the template is a pattern for a function that controls electrical
equipment. The template has six parameters, namely the voltage and
frequency at which the equlpment runs, the format of the M_ON slgnal, the
format of the M OFF signal and the formats of signals (TEST_ST:\RT and
TEST END) used to TEST the equipment.

» -
'l_'_'

~

The equipment in Fligure 11h.3 does not have a test function and so the
TEST_START and TEST_END parameters are not used: those parts of the

:ﬁ template that relate to self-test are redundant In thls case. When a

o template i1s used. the Auto-G checker ldentifles any redundant design.

. removes 1t and checks what remalns. Only the non-redundant parts of the

~7 design are used for automatic code generatlon.

N~

< The G/T notatlon supports the concept of meaningful text substitution

::.; macros. Uslng the notatlon. 1t Is possible to deflne convenlent syvnonyms lor

any name or expression. Auto-G checks that every macro Is correctly

defined. and that each use matches the definltion.

:-

.

o 45

L.
RN AT R Y A \'\.s.\. S WP % T e Y L Nl e e S P R R T N S L A R LSRR LS
Y x'-" \‘\“ a0 "«J' N x"\,"' '\."\"‘ v A AT R R A LT rioo

Rallie® st Mol ol adh 2ol Wt S s YRS cl & % LS A e Ak bt Atar e Sia Aa S in Sl Gl AR e bl sl eal A mvT

REaiC At s~ AR A A AN vk abl abie- ahs aR“aRh= aar ad* dae. ger

Y

(g}
wsed0ud [0OJ3uU0] YiS173WIV(] seed0u0 [0u3UOY h
440730V tenyose uy 440 3OV ten3de uv
NO~ 30V a NO ™~ 3WOV N3 1™ 3WoY
€ 041NDD T08INGD

dLVIdWEGL V 40 dSN

g Ul 2andiy JLVIdWAL VvV 40 3SN :Z°YIT @an3iy

[

!

NN

R O
L]

A
{J

.

o

CA AL
AN S S
,\)...,xx.)

-

KA SRR IR~ 7 OUAD LTI CATMA LR AR 2 e TR
AR R e e LR AR S e P AR A e
O,..w nﬂx\.\\ 8 REARARET ...,....-.in...ﬂ ..-.a\r..‘-&. N Qs.r-...... .

FTYCII T X7 nrr 7S F LTINS W™ Y Ay N W LW

u The G/T notation allows the designer to describe data structures of arbitrary
complexity. Data may be global to the system, or may be local and private
to part of the system. The characteristics of a varlable can be declared
preclsely lLe. Its type. its Inltlal value, whether 1t is read/write or read only
and what functions may access It.

..- Normally. data Is carrted between functional oblects by slgnal. Functional
obJects may also read and wrlte to external data if this Is consistent with
v the way the data has been declared.

For any functton. Auto-G allows the deslgner to deflne its communications
-~ Interface - that ls, the external data that 1s accessed. and the tvpes of slznal
- sent and recelved., Interface deflnitlon may be done at any level of abstrac-
tlon (as shown in Flgure 11].1), and the consistency of the Interface deflni-
A ilons at every level Is checked automatlcally by Auto-G. The communication
‘;' subsymbols make explielt the use and flow of data within the system. The
flow of data can be made even clearer by Joinlng the ‘send’ action in one
function to the ‘recelve’ actlon In another (as shown in Figure 11].2).

The use of the G/T notatlon alone cannot adequately describe data flows
because the system consists of concurrent functions., This Is because a static
l’ analysis cannot determine what data values are passed around when several

functions access the same varlable. One of the outputs from Auto-X ls

information on how data s used moment by moment: from this Information,

Auto-X eenerates a trace listing showing the actual data flows within the

svstem.

- Auto-Goallows the behavior of each concurrent functlon to be described iu

terms of a state transitlon network l.e. a set of of dliscrete states and a set
.- of transitions between those states, where transition Is a sequence of actions
trizgered by some condition or event. The graphleal representation ot a
network Is very simtlar to a traditlonal flowchart.

The G/T notatlon permits design at any level of abstraction. and what s
desertbed as an action at one Jevel may be decomposed Into a network, In
thi~ wayv, the notatlon permits one network to be pested within another
network, A typleal use of nested networks Is where a high level action

S requires communieation with another functlon: a G oexample ol thls Is shown
- i Flanre IK.1.

T ANV LV NOILLINIJAQ FDVAVILNI :1°fyy san3dyy

NIORROY BTUS
LIZYER L)]

e

SOyt un
wteuey
L T34 =AN

Biwn

- Ol'.".l ﬁ m s "Oﬂtos Tun
% ans |t T3 BN, rarovew
1 . LR — 1 LI T

PV 13w
| N]
(2eavis)
hetidabotus]
48 surner 4p _ - e o8 @)
* ESLP
NOTBATMN WOV
TS - \f..-. -.f..v\ . -...v\-.xuu \-.- \.---\-1_ o - .. . » h At ..l-!.rl ' . ..‘. . o, -J \S\-v--a.-n.-.r f\l\ ~s
ATy DR \l f«...r..r.. TN, .w \J,.J ..\«...nx... oo JOr Y .r......n..n‘r v
P A ANVY, 4 ol W A i Xl gy 4 " » y

SASSI00¥Ud NIIMLIL MOTd ViIvd

h -Lr0 VO YT

T ovaw

ABRLTAON

8y mogte
[T)

[

zhi1 eandyy

ssuStILL

I

®3eg eserde
L

I

vetesteiey

vava

......u.s.:...

oniLIvE

(2eavie)

s

W AT MO Ov e

XY™
setounwn

enenp 93eg PNF Bilua ‘ONF OVIW
- PRV Silun ‘OB OVIW

wIBVRVW r

Preg peae
.y o3tum
1 ruem

|

Avrep
0100y

=ty sepue s

®sor0 sy
so0ung

.\%..\. 2T,

- s * Y5t 4

.r z.... .,...».

., .-..,.,.).‘
»" N Lx-v

]
f_‘.
M N

“

»

-
Ol M40

"N T8 SN

s

R S
¥}
.:.- . ‘:

40

AR AAIAT
RN

4]

VAN

>

AHYOMLIN V NIHLIM MIOMLIN V DT ®Jn3ty £
o =
;
4
)
. .
‘ | 2
| | 2l
' | 2
! ' e
[} “ I ”.-.x d
" | _ .,. :
" ” 04 lil““‘-‘“‘ll“.”l.ﬂ l.-...‘.-’..l-n.l-"D T8{ | _ :
m m (55 1) % “ “
! ! R Dastuasue no—ma e weis Aren !]
] ” B)] | |
] [Hﬁ-ss!d! | “ A ..
" (eania) | _ ! _ ;
] ' “n e -~ - - - - _ |||||||||||| | ! .”
“ I Ilm".l 784) | .
“ EE.... o .
] | N] v S
| Y
“ (Aeoevie) _. W
| ! D X

)
ce
N
e
e
.
LRI L R, < PRI ~ IR AR IR
...s S0-\)...... AR e \:\..s.h.\..w..__.,. SR 1 SN .P.faurxf\,. gy \.... K @ 7
p 5 21 5 LA e b Y A s = e T T T AT : £ L s . e S

nayt : 2 -

12. Is there a paradigm embedded In your system? Il so, describe 1t
briefly.

The G.T notatlon 1s methodology independent and therefore does not
postulate any embedded paradigm. This means that the front end part of
the Auto-G toolset does not contain any embedded paradigm.

Auto-G supports the development of oblect-oriented systems consisting of
asynchronous tunctional objects communlicating only by asynchronous messages
(with non-destructive send and destructive recelve). For Implementing
svstems of thls sort, Advanced System Archltectures have developed speclal
hardware Kernels which enable messages to be sent efficlently between
functions with a processing overhead of the order of mlcroseconds rather than
mililiseconds. This efflclent message handling makes It practical to forbld the
use of shared data. For users wishing to lmplement objJect-orlented systems.
the back end of the toolset (l.e. the Auto-G checker. Auto-X and the Code
Generators) currently has rules bullt In that restrict the use of concepts
avallable in the notatlon to what can be supported In the target environ-
ment. It is Intended to produce alternative verslons of these tools supporting
different target environments.

13. Describe the external tools with which your system Iinterfaces (tool
compatlibllity).

Aito-G has been destened with all the "hooks' necessaryv to Integrate it fully
within project support environments in which additlonal facllities (such as
configuration management and project management) are provided by other
tools.

With help from Advanced system Archltectures, customers have successtully
linked the Auto-G database to other tools within thelr own proprietary
development environments: one such tool 1s a text editor which guldes
programmers codineg in JOVIAL: a second tool generates test data antomatl-
cally nsing as a basis the interface deseriptions within the database: a third
tool antomatieally generates documentation o DoD standards e.qc. DOD-STD-

2167,

ASA hns plans to link Auto-Geodirectly to the ORACLE database Tor which
other rools are also avallable. In addition. developers ol Expertware, GENOS.
and ISTAR have evalnated Anato-Goo with o view to Including 1t within their

produets, AN I~ monttoring the Portable Common Tools Favironment

~

-
~

L

[
»

N
.

1 _—

*y

f

‘
ER

.
f «
.

LA

-

P

Pl ot
«

r e

(AR AR

DN

YA AN WAL LS

{PCTE) Initlative: 1t 1s hoped that this Initiative will propose a set of
Intertace standards that can be adopted by Auto-G.

14. Describe how your system supports hlerarchical decomposition and flow
direction (topdown, bottoms-up, both, etc.), architectural perspectives (designer
creativity) and obJect-oriented design.

14.1 Flow Direction

Auto-Goencourages a top-down approach to design since it allows any number
of levels of abstraction. Auto-G 1s capable of expressing the concepts used
in any of the popular structural design methodologles. Advanced System
Architectures provides tralning in system deslgn which uses a set of obJective
criteria to decide how to tunctlonally decompose the systeni.

Alternatively., a bottom-up approach can be used In which small tunctlons are
destened in isolatlon and then put together to form a system.

\Whether a pure top-down or bottom-up approach is used. or a mixture of
the two. the Auto-G checker performs a complete check of the system and
identifies aspects that might indlecate a poor design.

1+.2 Hlerarchial Decomposition. Architectural Perspectives and Object-
Orlented Deslgn

The view facility described In the response to Question 10 allows the system
to be examlined from any architectural perspective. The G/T notation fully
supports both hilerarchlcal decomposition and an object-oriented design:
examples of these aspects of the notatlon are given in the response to
Ouestion 5.

15. Is your system supported by formal syntax & semantics? Describe
bricfly.

Yes. For both the graphical and the textual man-machine intertaces of
Atto-Gis s formal abstract syntax and semanties exists In the form of an
abhstract langnace D which Is invistble to the user,

Joth concrete syvntaxes (Goand T) are translated Into/trom D by Auto-G:
This ensures complete consisteney between the eraphlieal and textual represen-
fations and also makes two o owayv o rranshhtions possible.

T Ante=Coochecker, Awto-N gl the Code Generators all operate on the D

Pepreseniation o docuinents,

52

TR T T A e T L ST
SR

T T
N NS At g

R Aol Sak Bal Slak Rabk Aol Rab Aol Al Aok ol ot

16. Outline typlcal utllizatlon costs for your system (cost of acqulring, using,
E tralning, & malntalning 1t).

The purchase and malntenance cost of the Auto-G depends upon the number

r'l: of simultaneous users of the system that are anticipated - this flgure Is

A normally less than the number of people who may use this system.

- For each ‘user’. the purchase cost of Auto-G Is $15,000.00. The annual

malntenance charge of an Auto-G system lIs priced at 15% of the full

. purchase cost. For large Auto-G systems with over elght slmultaneous users,

, there is a slgnificant quantity discount. Site licenses can be negotlated.

- Advanced Svstem Architectures provide inltlal tralnlng and on-golng support

" in the use of Auto-G tools. The cost of attending a 4 day tralnlng course
At ASA's offices In Camberley, UK 1s $1,125.00. Courses can also be

arranged on customer premises.

P

Prices for other components of the Auto-G toolset (l.e. Auto-X and varlous
Code Generators) have not yvet been flxed.

17. Indicate the hostability (measure of degree of portabllity) of your
systerm.

Auto-G o ls avallable on any Unlx or VMS system for use via terminals
o (preferably with 2 mouse) using the Regls graphles protocol.

The svstem can also be supplied for Sun, Apollo. VAXNstatlon and Atarl 1040
. <T workstations. These workstations can be linked Into other development

- factlitles via a local area network such as KEthernet.

Ato-Gooproduees hardeopy diagrams through plotters using the HPGL
protocol. Laser printer output ls also belng developed.

18. Describe how your system supports Interdisciplinary abstractlons/represen-

' tatlons (l.e., systems engincering, software cnginecring, hardware engincering).

.

;: The G/T notation ean desertbe the functionallty ol any system. not mercly
OF o compnting svstem. Auto-Gooprovides o complete set of concepts which

- mayv be applled In all of the above appllieations.

- As oanexsanple, Flenre 1800 represents In Goa time-pulse triggered "AND'

- cate. Fiegre I represents in Goootlme-pulse trigeered "AND gate. Plaure

r I~.1 contains both formal and informal parts: the text within the fanetion

O L e N I
Ce AL
- L L N e
J&'f el tutnl oAl

@

31v9 anNv
ONV Vv 4

q

54

ALVO ANV, dUIOORIL dSTNd-9NLL V : 1°g1 @Jn3ig

Ao %4
.\r ..w...,.x..\..s

- -!-. Ay

g AL R A A A a0 e e _:..,._,.,...; - '
..\x.....x. i [T o ORIt xTaats s ey
r -IA. --.ﬂ) -\..\\- k.r\-\\\.\\\ ..vf.-\.ﬂ \- .-\-\!. fp-.ﬂ\-hn.—l-v",‘fuwfqﬂv\ﬁ-\fﬁ.

l!t ! (by t LSadh Sad anis Aoyl ek Suk N D Nad vk ool 8 Ul'!"!"!"Uﬂiu“l‘lllﬂUll."l."‘!“-"Ul.'t't’!tﬂl'.'!t‘vl'.'!t:'l_'--.-'vvw-c-w: AR R Rhe

vy
R

s

£
o}

."..

.
‘a

I |

-!

vu A

T e .

PRI AL Ay
) A
LTI L SN N PN NN

symbol (rectangle) I1s Informal commentary text ("AND GATE"); all other text
(TP. A, B. A AND B. () Is formal. The functlon !mplled by the symbol Is
that when a time pulse (TP) arrlves, the values existlng In the inputs (A, B)
are read. comblned by a logical AND (the expresslon "A AND B") and the
result transferred to the output C. The functlon Is repeated indeflnitely.

19. How complete Is the methodology - do Iits principles embody

-A development methodology only
-A design methodology only

-A programming methodology only
-A project control methodology
-A management methodology

-All of the above

Auto-G may be used to support any structured design methodology. Ad-
vanced sSystem Architectures recommends Its own complete design methodolo-
¢v known as the Sofchip Design Principles. This methodology pre-supposes
an object-orlented run-tlime environment which provides efficlent message
passing between tunctional objects. This methodology 1s taught by ASA on
its training courses. and is fully described In ASA's tralning material.

Not applicable. It Auto-G 1s used to produce a detalled design. then program
code (e.g. Ada) or executable target code may be generated automatlcally
directly from the design. In order to generate the complete system code. the
designer must «esign down to the lowest level of detall: some users consider
that detalled deslgn done using Auto-G Is programming by another name.

The G/T notation makes It easy to structure a project as a number of
paratlel work activities.

Auto-Geodoes not contaln any project control facilitles as 1t Is Intended to be
nsed in conjunction with a separate project control system. Auto-G has the
necessary "hooks™ to interconnect with any profect control svstem.

The G/T notation makes 1t easy to manage the parallel evolution of a
number of documents,

Auto-Co does not contain any configuration management factlities as it is
tntended to be used 1 conjunetlon with o separate configuration management
svsten, Aro-Ge has the necessary "hooks™ to Interconnect with any configu-
ration ananseetmnent svstoen,

s
N
e
.
<
(20. Describe how your system supports a team development approach.
N (Number of stations/users).
N
E The G/T notatlon supports decomposition of a system Into a hlerarchy of
" documents (contalning statements or submodules), each of which may be
"-' develcped Independently of the others by a single user or by a small team
A working closely together. The notatlon makes explicit the dependency of one
:\ document upon other documents.
A
::: Auto-G I1s intended to be used In conjunction with a project conflguration
' management phtlosophy - the G/T notatilon provides the means of lmplement-
. Ing a management system making use of the access control facilities of the
N host operating system. If Auto-G lIs integrated fully into a sophlstlcated
:Z development environment, then there are no restrictlons on how many users
:.' work simultaneously above those which the host environment lmposes. Even
without a sophisticated development environment, documents may be worked
< : on In parallel provided that development work on each document Is done in
a separate user directory. A document under development may be checked
N in conjunction with other documents at any stage provided read access to
X other documents 1is permlitted.
(. For use on large projects, one Auto-G customer Is developing an Infrastruc-
::: ture in which Auto-G workstations are networked into a large host computer
::: which acts as a [lle-server. configuration manager and database machine.
%
b 21. Describe how your system supports design trade-offs.
_j: [t is Intended to enhance Auto-G so that 1t provides assistance in calculating
:-: varlous design metries. With this additional functionality. 1t will be Impossi-
-'.j ble to compare alternative deslgn solutions and to select the most appropriate
». deslgn for the problem environment. In additlon. the metries jor the chosen
: solurton can be used to dimenslon the system precisely.
&
: 22. Indicate the range ol problems to which the system can be applied.
N
k- The /7T notation s a complete formal notatilon that can be used (o
desertbe all funetional aspects of any system - tncluding functions that are
:: electrieal. elecrronie, mechanical, hydraulle, computer hardware and software,
oo haman. The G/T notation 1s partieularly sultable for desceribing Iarge
::', complex real-time systems. Auto-Goomakes 1t easy to use the G language.
f':: atd provides automatic checking of requirements, specifleations and designs.
3
4%
g
o 56
e
N
R i T e i S

P

LUK

W
,-‘ Auto-G has been used successfully to develop systems In the followlng
appllcation areas:
E telecommunications and digital switching
civll and mllltary command and control
Industrial process control
avionles and aerospace systems
limited resource management
! applicatlon specific Integrated circult (ASIC) design
23. List the names, addresses, and phone numbers of flve (customers) major
o users of your system.
- Mr. G. Bryant
'_'; GEC Avionles Limited
e Alrborne Display Division
.. Alrport Works, Rochester
;' Kent ME1 2XX. Unlted Kingdom
Telephone —+44 643 44400 ext. 3237
:'_:l Mr. A. Bosman
Philips AT & T
g Warrandebergstraat &
r. PO Box 18, 1270 AA Hulzen
The Netherlands
o Telephone +31 35.87.48.90
\Nr. J. Davis
' Britlsh Aerospace plc
. Bracknell Divislon
Downshire Way Bracknell
:L‘, Berks RG12 1QL. Unlted Kingdom
e Lelephone +44 344 183222
?_'« Frau B. INuck-3Wutzke
= \MBB ERNO. Dept. RBO22
.. Rawarahretechntk GmbH
o Hiuneleldstrasse 1-5. D-2800 Bremen 1
L . .
West Germany
. Telephone 419 421 539 4211
ﬁ-‘
2
£
"-
»
57
O o SR A K KO "‘\f ‘“‘ AP R S N WA ST
*.\'.\’!" 7 ,.' .' ’J"f ."'r" J‘ a .!.'0'0.) !:‘..l. .':..'l. .l X l! h.! l... N A- ',k‘ RN e X 0 K o.".~'

m‘ﬁwW\leW\—vrv-rv-—--v—---‘-—--ﬁ.-j

Thorn-EMI Electronics Limited
Computer Systems Division
\Wookey Hole Road. Wells

omerset BA5 1AA, Unlted Kingdom

Telephone +44 749 72081

S

' ¢
[t
c

“y P R T

-. A
&
Y

g

L

oL Yoy

xQ

A A
» ..W.:.M...H.

W

\J...

[
nuﬂhh-.\-&

o~

7 -. -. ..q . -..-. -. .,4.(

.\-\n‘.--\-(,...-..

.«...w.\. o .

.“g r N . A A N v T TN T (WY T YN TV A Ane Mg gug Lo i Sig Rig Rig BT 74

K
-
|2

-
b

A
x
A

[s

B

’
< ',L Jodlrey Associates Inc,
¢ 162 Hightleld Court
N severna Park. MD o 21146
SR
¢ %
(-
4
: ..
o
k&
Lo
" \'

AT o
&2

LY

YN

4

T -
_—

.
.

50

-y a £ r 8K

N - . . Te _‘- .‘- - “w T .
e ___._z..r;-

ol . n’.d‘.‘- -1‘-«[

]

Y

.
’
N .
ax

e 4'a R

vt

.-...nf.. : r 4 e AT - RN YN L WYy A R P
.v \\- f-n:!.u-\u.-.-..- g .A-N..-n',i \I-\....‘-.n--..)-. \-t\;!\q Py ', -.~ e .. .\nn, .,-w\.r-.- \MA.V. ' -,\. i' \-»\-.\\u-;.hﬂ ﬂ- ‘

o
]
el e L - L e WP @ - -

.
'

e

"V TN, T Ty

>

—~

‘. P A A

VAN

L)

'

P

ey SAE S
L

e

we

.

-

» - - W . 4 - - v - > 2kt i oy " > N U SA a4 atl oVl at

Jodfrey Assoclates, Inc.

1. Describe how your system supports early detectlon of inconsistencies,
closure and errors.

ProMod supplles many balancing and checking functlons to ensure complete-
ness and consistency. The manual for ProMod "A Complete Description”
may he consulted for some of the checks made by ProMod. Please see -
syvntax Checks During Creation., Structured Analvsls Analyvzer. Nodular Design
Analyzer. and Pseudocode Analyzer.

2. What type of progress metric does thc system produce? Is 1L quantifi-
able measure of completeness?

ProNlod supplles the number of objects contalned in the project library.
This would include the number of data flow dlagrams. data ltems. ete.. that
have been deflned thus far.

3. Describe how your system supports documentation, program inanagement
and control.

ProNlod does not have facilitles for Gant charts etc.. to support project
management. However, there 1s a wlde range of high-level and detailed level
reports that can be pulled to allow monitoring of progress. [For details on
these reports see "A Complete Description™ - Documenting and Reporting.

1. Describe how your system supports real time design.

ProNod offers the methodology of Derek Hatley/Lear-Slegler including control
Now dlagrams, control spectfleations. and state transitlon diagrams. Scee
Real-Time In "Complete Desceription.”

5. Describe how your system supports concurrency, parallelism.

The =ame <structures tound tn Ada (task., package. ete.) may be used in the
ProNiod analysis and desian phases. This Is amplified in the real-time design
extension.

6. Is your system constralned to a particular Implementation language (Ada)?

Newo ProXNled does not constroln the pser 1o any particalar Implementation or

S,

e on e e s ahegy

Pt

.\!\ 1~

NN

3,

A AL N

NN
P

IR N

.
'l‘l'l"‘{l‘-

: @

LYY

PAlSSS

LI I B

¢ 2

s e,)

"

‘l‘

)

S

.

[

Ay Ly

v s
’

»

3

o 5
.

o

PP AR

e

L W

e et al .

A

am

AT S LS R e T O sy N T S TR S T D T R T o ey
. .1' SN P m\.~ ,_) r__. __.r - Ay > EA AN __

7. Does you system produce Ada PDL?

The current lmplementation of ProMod consists ol three phases: requlrements
definitlon. archltectural design. and detall design. During detall deslgn the
encineer will tdentify Input and output parameters and specify the logic of
the alsorithim for each functional component of the system. The loglical
specification s written In a semli-formal language patterned after that of
Cain. Farber and Gordon. Parameter strings wil be checked by ProlMod to
ensure they are of proper length and type and that they match entries
contained in the ProlMod data type dictionary. Use of input/output data
within the context of the algorithm specification will also be checked for
consistency with the parameter string declaration. The algortthm wil be
checked for correct syvntax and to ensure that all data used have been
declared appropriately. Once a valld specllication has been entered, ProNod
will convert it to Ada PDL using an Ada Code PFrame Generator. The Ada
Code Frame Generator translates parameter strings to valid Ada darta
declarations and the algorithm specitication to syutactically correct Ada code.
The programmer will need to elaborate the Ada PDLIn arcas indicated by
Proxi~d and supply lower level details not found in the specitication. The
ProNlod Ada Code Frame Generator is currently available and is being used
by <everal Department ol Delense contractors.

8. Describe how your system supports life cycile intraphase & interphase
communications.

ProNlod is the only commercially avaliable tool that inteerates the analysis,
architeetural, and design phases. ProMod transtforms the conceptual analysis
menlel 1o design packages. The architectural design phase allows lor and
cheeks the consistency of detall desien procedures, see 7 A Complete
Desceription™ - The Transtormer.

9. Is your system automated, executable, compilable?

The <vstemn is sold as an executable paekace Tor the VAN and 1BN PO

10. Desceribe the graphies support for your systeti.

The anndysls phase s flly supported by a araphies oditor. See 7\ Complete
Pre<eription™ - Objects Data Flow Dinaraims.

~ 5 N "

A s 298 a »

Describe how your system supports concepts of:

-Farly prototyping vs. rapld prototyping
-Software reusability
~-Information hiding
-Packaging concept
~-Abstraction

~Typing

~-volutionary development
~-Generies

~-Macros

~Data [lows

-Control flows

Formal specification lanzunges may be used during the analysis phase 1o
create operational specilieations.

ALY part of the analvsis, «desien, or code features may be exporred and used
in other systems,

ProNod uses the desiecn methodolosy of Parnas. The packages created in
the architectural design may <hare procedures but not data. Disembodied
data are not allowed to low through the system design.

The primary tool of desiun used by ProMod is the package or moduale. 1t s
cquivalent to the Ada concept ol package.

ProNiod models the sy<tem with data and procedural abstractions at the
analvsis phase. During design, objects and procedures are encapsulated in

ProNfod packages.

ProNlod supports o data tyvpe dictionnry. [0 also cheeks for type consistency

in paekage interactions,

ProXlod ofters featnres 1o support phased development and integration ol

desten rrom various sonrces and jevels of abstractlon.

The vse o coneries is cncournced by ProNod. Actually every ProNlod

poacknee I oeloser 1o n cenerte specilication than o specifie fnstantintion,

oLl can enstlly he ased 1o develop the definition of gaeros o any other

ot precrainming abstroetion.,

VY YWYXiE

.I
L4

Laainls

[iy

_— .
AT

. _‘
y r‘.r]

o
P

-
1
T

P
AP

3

"

’
v

x &t
AN
el

1
PL

X r

- ®
T %
oo,

‘l'l'l
R

-

"“-:I‘I.'_l.l

LI} l‘..';;.

a

s a a8

v
a

Pd
AN

B4

| 3
LS

QLR)

- e

<ee "A Complete Deseription™ - Objects Data Flow Dlagrams
<ee TA Complete Description™ - Real-Time Analysis

12. Is there a paradigm embedded in your system? If so, describe 1t
briefly.

ProNod s based on the use of Structured Analyvsts (DeMarco). Modualar
desten incorporating abstraction and information hlding (Parnas) and program
desten based on o generie Caine. Farber and Gordon PDIL, and on several
Adn PDLs ineluding Ada itself. Ada-DL. and INey One.

13. Describe the external tools with which your system interfaces (tool
compatibility).

ProNod prodiees ASCLE files of all objects and reports. They may be
inchuled in word processing packages. documentation packages., project
mioauieement packaces and any o other tool capable of an ASCIE interface,

114. Describe how your system supports hicrarchical deccomposition and [low
direction (topdown, bottoms-up, both, cte.), architectural perspectives (designer
creativity) and object-oriented design.

ProNlod supports several design methods including hierarchical and object-ori-
cnted, See T Complete Deseription™ Modular Design.

15. Is your system supported by formal syntax & semantics? Describe
briefly.

ProXlod does hove a0 formal Syntax for each object. This is provided in n
BNE <ol in the ProNlod User's Gide,

16, Outline typleal utilization costs for your system (cost of acquiring, using,
training, & maintaining).

Toral ~vstem on PO - nader $10.000

Teanl svstong on Voan - 820,000 - $60.000 (depending on options and Lvpe of
N

Treatuins - FLoog dollars per aday plus expenses (5o fewer ddayvs depending

o Caanhiiarity ow it et hadolovies)

Ot riedbee b T avadinble npon request,

N

TN

(A

R

Al

17. Indicate the hostabllity (measure of degree of portability) of your

system.

ProNlod Is available on any [BM PC. and all DEC Vax systems. The
svstem Is completely portable between Vax and/or PC systems.

18. Describe how your system supports interdisciplinary abstractlons/represen-
tations (l.e., systems engineering, software engincerling, hardware engineering).

ProNiod is a teol built Tor systems abstractlons. Cllents currently use
ProNod to model computer boards, and subsvstems as well as programming
abstractions. It s oa generie systems modeling tool, with a target of pro-

ramming lngunges,
19. Tlow compleve is the methodology - do its principles cmbody

-A development methodology only
-A design methodology only

-A programming methodology only
-A project control methodology
-A manragement methodology

-All of the above

ProNioad 1soa complete software development methodology. This includes
requirements analysis. architectural design. detail design. and programming (via

code rame generators).,

20. besceribe how your system supports a tcam development approach.
(Number of stations/users).

ProNtod = primarily nsed inoa team environment. This includes many users
anocr o single VANL many POOousers. and omost ooften. on the VAN with PCs
el s work <tations. The tool s not limited to any certain number of

TI=t ">,
21, Describe how your system supports design trade-ofTs.
ProNTod will perform consisteney amd other error cheeking to amake smre the

clintiee e traiy o Toende-of 07 0 wHE also peavide reports Tor aceeesting the

T et o e propesed chanee,

Rats Indleate the range of problems to which the system can be applied.

N e b g oy sasten ol ware desien proilen.

c
G5

ot 20’ 0 10 A" " 8t 3 gha® Bav Ap-aa o iy A - U W
e
hY
N
¥,
4
K-,
'.j: 23. List the names, addresses, and phone numbers of five (customers) major
" users of your systerm.
" Dan Roy
- Century Computing
- S101 Sandy Spring Road
» Laurel. ND 20707
- 301/953-3330
- ,
- Barry Gillls
- aston Corp.
- ‘
- 6564 Lolsdale Ct.
~te. 900
=S springtield. VA 2150-1872
% 703,/922-5600
Bl
-,
: f.ee Trent
! Teledyne
:'.. 19601 Nordhoft =t.
o Northridge, CA - 91324
8~ SIR/SS6-211 Ext. 263+
10
1

ot \VanNuann
Nleusurex

g N

- I Results Way

> Cupertino, CA - 950144

-, 10N/ 255-1500

-
¥ T
B Giregy Reed

:{ stmmonds Precision
§ Panton Road
Vercennes, Vermont 05491

¢ NO2/RTT-20110 Fxt 2578
N
1
‘..
b .
10
L
(,
b
.
o

<
.n‘

L]

»
D)
A
u 65
}d

[]
-,

B Ty Py ;.r.; ~;l.~,~.f;:.- r_\‘.r\vr_- o e e T P TP N T .. %Jw Y P T e AU i a e

y ” v “' " y A

o '&5 v,
o W

B S
]

kY
-

At

Pl
AR

-t "
- . "-
by <
N
8

‘. ‘l.—r
N

B W

: -?:_ -

) ‘\:

iy -
.

.r*.' s

J‘\) -

e -

i .

Ae v

N .:-‘

o

;' :.'_ Westinghouse Electric Corporation
o 4 Defense Group

NS Friendship Site

NP Box 1693

= Baltinore. MD 21203

N

-
v
‘e
-y
.
.

A

| =
V@

v‘.‘-

t
1

2

(a2 e

1

O P
'f I'd _‘-'_ -'4-'_‘_"_!,4'.1'_1

\;.'n’

o
'\v: ‘-:.
ey 67
¥
N
Wy
4 -
L
' LN
X
o
P e e ™

. N T L) e e e . . . " } . N A
e PR e L Fe Wt "\.F\u’J‘ra'-l'-‘\-"-"'\\f\u’-'l'\-r-h('\-f' N A 0 " A
I-.-’-.\.f.,-.-’-,-f-«_--,-, N '-""-I"'.h“' LWl Sl % n.. CA 's. LY '$. ‘ '\- $.o, ™ ,; '2‘“%: AN l.~l'.. . l.|.l“ .:“_‘ e "' ,&'.o ':Q. »

T ‘v“'“*wuvl’vvvw—‘ww—w

Sy

....(L

_J-v‘.- -J

..—-u..) nnwf
. J"

69

-

. aa L am aB b o

-y

V.

i

Westinghouse Electric Corporation

1. Describe how your system supports early detection of Inconsistencies,
closure and errors.

The SIDE Facillty supports early detection of Inconsistencles, closures, and
errors both explicitly In Its deslgn and Implicitly by its Implementation. The
~[DE Facllity i1s based on a graphlcal methodology that enables users to
visually check for lnconsistencles and completeness. The underlying program
also checks for tvpe consistency and errors while creating/modifving an ADMI
oraph. This cheeking is further enhanced through use of an Al language and
frame representation of the data objects. This type of representation lends
itself easily to a logical checking of a graph as it is belng created/modified.
[Fizure 1 (on the following page) deplcts an example trame representation.

2. What type of progress metric does the system produce? s it quantifi-
able measure of completeness?

The user mayv check graph completeness at any point ol graph creatlon and
modifieation. At this time, the program wlll list any unconnected entities. as
well as any unset attributes that are necessary for graph completeness. This
intormation could easily be used to generate a quantiliable measure of
completeness. This capabllity could also bhe extended to several levels. to not
only check completeness at the graph level. but to check il underlying (child)
nodes of the graph exist In the library or must he elther created or moditied
1o mateh the abstract node.

3. Describe how your system supports documentation, program management
and control.

The SIDE Facllity supports documentation through several methods. A
plotter is used to generate a picture of the graph. including its nodes and
connectivity., The facility also produces tables that describe each ol the
nodes and the quenes that connect, them. The early implementation also
omtpits the Proloe database for the glven graph.

1. Deseribe how your system supports real time design.

One of the driving factors behind the SIDE acility has been 1o provide a
<tate of the art real thme desion facility that supports the ADN desien

methodolosy <starting af systems requirements and transcending the develop-
ment path theoueh module or processor desten. The underiving data flow

picthodolooy Tmplicitly supports real-time development. Atiributes have been
)
" I Y Tt T T L e T e T AT AT A N VLSS AL Y &
v -",.’.a A .' _w_'.r o J',l.-f' f.\ o ._ - J‘.," A A A TR ":f""--"r{':."'."""”' - AN ‘-.N'
n 5 ol fl " » RV, RO P A/ o Alldnda A N A LN

FFT Frame
Graph Frame
Num Inports: 1
N1 N2
Num Cutports: 1
N3 N4

InP 1 OutP 1

Node Frame
FFT
Name N4 is-a Outport
Frame
Inportl Outportl
Produce
Pred: N3 Succ: N6
Data Type
r—"“ Comment
Inport Dutport
Frame ||is-a Frame is-a
FFT
Source: N3 Sink: N5 Inport
Frame
Threshold
Data Type
Comment

Figure 1. A frame representation of a graph containing 4 nodes
points to frames that contain information on each of the nodes in the graph.

"""" 2" = . ary EL IS N Y » . L P
e e T O AR AN AU O

P AT R R N
S N M e

>
oo

‘x

&

«

v ‘?

»-' "

LD N
A.{‘\..h.-'&

r.'(.«. PSP AP

predeflned but the user may add any atoributes that define his system.
These attributes are used to describe parameters such as input data rates,
the flow of data between nodes, and the type of processing at each node.
A ¢raph slmulator can be used to verify that the deflned graph meets
real-time requirements In a single or multiprocessing environment.

5. Describe how your s, stem supports concurrency, parallelisin.

Parallelism is an implictt feature of the Applicatlon Description Nlethodology
with its data flow concept. Nodes represent processing elements that are
Jelined independently and may execute Independently ol each other. A node
Is ready to execute when each of its inports have data equal to or greater
than the threshold attribute for tvhat inport.

ADNIE also supports concurrency in graph delinitions. For example. node A
may provide input to node B at a rate faster than node B can process. To
<olve this problem. no coples of node B execute concurrentiv. The data
ouwtput from node A is switched after each execution to a copy of node B.
in a cireular fashion. and then recombined by a node that recelves an input
from each of the node B copiles.

6. Is your system constralned to a particular implementation language (Ada)?

The Applleation Description Methodology is a graphical description methodolo-
oy that is language Independent. It uses graphical constructs coupled with
textual descriptions to define a process. The database representation is then
nsed to cenerate Ada specifications that can be complled and executed. This
language was chosen to comply with DoD initiatives hecause of lts data
typing and constructs but the data base couid be used to generate specifica-
tions tor another language.

7. Does you system produce Ada PDL?
Yes,

8. Deseribe how your system supports life cycle intraphase & interphase
communications.

Pecanse o the hlerarchical <structure ol ADNL interphase life eyvele communi-
catfon support Is provide by the malti-levels of a graph and 1ts node. 10 o
chanze i omade to a node at the top-level, this chanee will be reflected ot

the Ada PDIE deseription level and then ot the detalled level nnderlying the
node cdelfTnitlon. Intraphase commiceation is supported by definition of

71

- { "_‘-' '-.«.4 -.;
o

e ia- faValia® Tl s Mot el il i) BN A7 as Bin Sun AvavAi Gain Sl S el Sl Nad Bal el S St Ban- B Andl a¢h ACE aid aud prs auh atl adt alaTAR* o dt g™) ao Re b etets
Y
4

. ADML I 2 node’s attributes are changed. any nodes connected to the node
K must also be modified 1 thelr Interconnect 18 affected.

9. Is your system automated, executable, compilable?

A maln objective of the SIDE facillty has been to Increase englneers’
productivity and éfticiency through the use of automation. Once a graph s
completely detined. Ada code can be automatically generated fromn the graph
description. This code 1s valid and can be complled and executed in any
NMIL-STD-Ada environment.

10. Describe the graphics support for your system.

A driving thrust behind the SIDE facllity has been to use graphics to
provide a user [riendly environment. This 1s done Implicitly through the use
ol ADNIL a zraphical representation language. In the earlier versions ol
SIDES a color graphies terminal was used as the Interface to the SIDIY
facility. Pop-up menus and actual granh drawings were a main leature ol
the program. This <yvstem is now being upgraded for a LISP machine
environment. The old features will be included along with multiple windows,
and the use of user ailds such as a mouse will be supported.

11. Describe how your system supports concepts of:

-IBarly prototyping vs. rapid prototyping
-Soltware reusability
-Information hiding
-Packaging councept
-Abstraction

-Typing

-fovolutionary devcelopment
-Generices

~-Macros

-Data flows

~Control flows

A

Fieure 2 (on the tollowing page) <shows the overall SIDE factlity concept,

ADNM tApplieations Desceription Nethodology) is a graphical representation
fanennee used by oo systems engineer In the development of svstems. The
cnvineer uses ADN in both the requirements and the design phases ol sysiem
developmient. The need for o graphical-based representation has developed

rote the dhmitations of parely textual bwnguances, Giraphical langunces provide

.
¥

»
«

P
.
Ll

72

"

.,
o

L]
R L SO A W

o

4
P W L W e P s T Y o T " K™ E "5 "8 2 2" p AP H R A A,
W .*"JM"" W B Pl E o P T P
i 3’:'. W o J.Q(JQ;MM:R-_MM ; .

3 Pl #* i)
-
T

[l =
=
;
;
§

]

L

.

::é'

(W< Graph Oxts Gase (Proieg D)
3 e

d ~.

iy - X
~

¥, Iy
g Mgmt Graph
%
Figure 2. The overall SIDE concept consists of reuseable libraries
; 1' and uses a graphical input based on ADM to create the central database.
L 73
K Cof . T A T e T e e T T T TN N A e R T \

¥
(4
3

&

x,
P
1

I'd
XV b

«
3

AR

o

S A2 >
L) .l.’

2.1

hoth the desicner and the user a medium for representing structure coherent-
Iv amd with varyving levels of detall,

ADM's basie structure resembles that of a data flow diagram. [t consists of
nodes and ares. The nodes represent functions and/or objJects. whereas the
ares deplet the connectivity and flow of the g¢raph. Each node must
represent an executable module or o subgraph. A subgraph also contalns
nodes and ares, agaln allowing 1ts nodes to represent executable modules or
<uberaphs. .\ craph level is detined when every node ls associated with a
suberaph or an executable module. The system graph s complete when
every level of the graph s defined.

~tce uraphs represent flow, they also depict system structure. Textual
Innguages are not zood representations ol <structure, however, they are good
representarions ol detail. The nodes of o graph are only abstractions of the
finetions theyv represent. hence. each node will have assoclated text describing
the node. This association allows users to view and comprehend all levels of
the wraph. I the text associated with o given node does not provide
<ulticient detail tor the user. s/he ean examine its subgraph.

ADNL faetlitates the ability o desiegn and review in a top-down manner. The
<structure of the graphs allow both the designer and the reviewer (user) to
approach the uraph with varyving levels of detaill. The *top-ltevel graphs
veneralize the processes and data transformations within the system. whereas
rhe lower-level sraphs represent the increased detall ol the system. Parsing
the eraph provides increasing detall of the system processes. Therefore. the

craph incorporates and provides the leatures of:

-Information hiding
-hierarchical structure
-<eparation ol coneerns
-top-down/bottom-up design

Unlike pure textual Inneuaces, ADNE directly provides a methodology for
<tep-wise refinement, The destener may begin system developiient by
SpeciVite processes as Lidh-tevel abstractions, then further refine the desion
Vi the <ub-ernphs. The user also benefits from this development approach.
Devinse ~/he ean review the system ot coch Jevel which 10 was developed,
Porsine the nested structure of the sraph provides quick nccess 1o desired

v els of ddetatl. Reviewing the rext associnted with the destred node provides
deseriptions of the node’s chnrncteristies and an explanation o ts wse. The
St prenvides e developer the requirements ol a0 pode’s subaraph, Iroalso
T the el o overview of the anderlyvine subh-processes. without the

sl o e el strnetinre,

74

Nany o svstemn designers utilize data flow diagrams during developinent. Using
. Computer-Alded Graphies. ADN can simulate this development methodology.
- ADM's basis is data flow representation. Introducing control flow In a concise.

simple manner. Introducing the constructs for control flow provides two

0 henelits:

% -providing control flow which is documented and relatively easy to use.
. sensuring o standard usage of the constructs to Increase understand-
ability amonyg users.

o
: ADNE not only allows the developer to design systems uslng standard

constructs, but also tests new configurations to ensure theyv follow the rules
v for creating eraphs. The graphleal structure of the language alds In ensuring
-‘_f' completeness, consisteney, and connectivity of the svstem. Omnce a system 13

desicned nsing the ADM methodology. the system engineer does not have the
burdensome ask of checking lor consistency. completeness, and connectlvity
& as s/he may with a textual speciticatlon.

Usine o CAD racility provides quicker design and access than conventional
hond-written approaches. The CAD factlity 1z capable of storing the struc-
e of the eraph. nesting Information, parsing algorithms. organizing text,
porteavine the reconfigurations. and other data base related tasks. With the
Felier of these responsibilities. the designer can devote more of his/their

eftorts toward the actual deslen process.,

ADN allows s components to be ereated and modifted Independent of each
Sther. This princlple. “separation ol concerns’. allows the svstem to be
areanized and divided Into separate units. Tt provides greater [lexibillty slnce
e modificatlons are well-contined. It aiso provides the essential groundwork
for security amone development. Nodes which incorporate classilied informa-
tion e e developed separately and refuse examination to anyone withot

neeess privileges,

The ADN mcthodolooy s implementation independent. That isc ADNE does
ol restriet which Bimeange the node implementations are written. The
favest fevel podes are abstractions of the executable modules. The exeentable

dodiles e object modies written tnoany sonree language chosen by the

cncineer. Henee, ADN does not depend apon the Knowledae ol any given
Metiee e ddevelop system=. ADNL due to Hts eraphleal basiso enan be
Gncerstood Dy prasranniners as o owell as opon-programmers. This oabds in elosing
e conpanieation 2ap between tecbnieal and omanag ment personnel. s on
ot k-t e b e desicn revicws ean bhecome anore produetive,

’d
.

L an

o

A]

[t
DA

—
)
'
. b
et

e

Sune

o

ey
Rl
D Ty
Voo

X l. "."

R

N ./ P

DA

:
L

Pl
sy

)
I
2 e

-

0
S A

v B Ba

LAk ek)

ADN nssumes the lowest level nodes to be associated with executable
modules. The code which links and Interfaces between the modules will be
senerated by the ADM language. Originally, the Interface code will be
~eperated In Ada. however, this Is not to Imply Ada I1s the only language
which ADMNI supports. The Ada code generated by the ADM language can
te manipulated by a common editor. This provides the flexibliity and
~trenetll of the Ada language which ADM may not provide. By generating
The intertace code between the modules, the probabllity of error assoclated
with hunman-generated code will dlsappear.

To tuellitate the collection of executable modules, ADM will lInk 1o a
rensable library of modules and routines. This lbrary wil be accessed by a
“fibrary assistant”. The asslstant wlll examine the requlirements of the
necded rontine specitfled in the ADM graplh, then proceed to tind a sultable
mateh within the ltbrary. The prototype to be developed for the October
19%6 1RAUD presentation will not Include the lihrary assistant. [support for
the project continues In 1987, the assistant can be developed.

12. Is therc a paradigm cmbedded in your system? I so, describe it
briclly.

The paradigm embedded in the SIDE racility was developed at WEC and
called Directed Graph Methodology (DGM). This methodology was based on
pure dara flow and theretore Application Description Methodology has
expanded on DGM to Include controb flow.

13. Deseribe the external tools with which your system interfaces (Lool
compabibility).

The <SIDE thellity intertaces to the {ollowing tools:
Ada compiler.
FLOSS T systemr stmulator
1750 Simulator
ADMN Goraph Stinudator

11. Deseribe how your system supports hicrarchical decomposition and flow
direcetion (topdown, bottoms-up, both, ete.), architectural perspectives (designer
creativity) and object-oriented design.

.

The SIDE eility supports hlerarehieal decomposition by detinition of the

Srapbieni based omethodology, As mentioned earficr. ADN supports top-dowi
el e bedrtaan-np desten. The desiener ean ocreate hich-tevel nodes st
choty procorsl too decompose them into Fespective stub-rasks, namely top-down

ooten. Ve bestener ean also sefeer the ddesired fow-tevel rontines and ink

T O e T T o P P Y T Y U T VWO T TR IO .= = w e e

-— g
'

therl to create the llgh-level processes, namely bottom-up desten. Allowing
. both directions of approach provides the flexibility most designers require. In
; ‘ reallty. most designers Incorporate both approaches when deslgning a svsten.

There are no limitations on the g¢graph representations since the user can
create his own attributes to describe a glven system. ADM was originally
“ targeted for real-tiine multiprocessing appllcations, but the nodes can be used

to represent any type of object and the attributes needed to describe that
n oblect ean be defined by the designer.

15. Is your system supported by formal syntax & semantics? Describe
f\.;'. brielly.

The ADM fnnguage consists of few constructs, providing beginners the abiliry
= ol guick nse without hours of learning the syvntax. The languace is hroken
g mro four basle constructs, consisting of eight distinet icons:

'.';:' Dara Node Types (see Flg., 3)
™ -Solid Cirele - Internal Data Transformation
_ -=oltd sguare - External Data Transformation
- Contror Node Types (see Flg.)
. -Hyphenated Circle - Internal Control Transformation
~ The M . r Y
-Hyphenated Cirele - external Control Transtormation
.- Flow Types (cee Mg, 3)
o~ =olld Arrow - Data Flow
. -Hyphenated Arrow - Control Flow
u -Chrele w/Nalve - Flow Control Valve
Datn Storage (see o, 6)
= -paraitel Lines - Data Store
The mllowing seetjons deseribe each ol these constriet types,
Sy
"t Dot Neade Types: Daota transtormations ean produce only data. A pre
datn transtormation. consisting ol both input and ontput., I depleted ason
circle ddrawn withe o solid line., [t muast consume Input and produaee oatpat,
s The input consimed ean bhe either data o control <lenals. The output
procduced nnst he oniy o data, These data translformations are considered
-~ Hiternnl beeatuse they relv o on input aud produace onepuat,

oo e either prodicees just o datos ot puto o consames any input. hot o

‘b-'} ot then s enpstdered an external data nodes AR external data node -
: e e qinre sdenw s with <ofil Hines, N~ entioned. external datn
77

1“*:
NN
«.7
:{3 ADM CONSTRUCTS
NN Data Node Structures
NN Solid Circle:
(S " internal data transformation
i {.e. number crunchers
.E:j device controllers
%.igé restrictions:
v must accept either signal(s) or data
'%Q: & produce only data
i{% Solid Square:
‘ external data devices
oy i.e. sensors, weapons
o restrictions:
batit must accept input or provide output,
5\'. but not both

Figure 3 - Data Nodes

Control Node Structures

Hyphenated Circle:
Internal c~irtrol transformation -

”~ ~
/ \ (control logic node)
[h -
- \ J restrictions:
% \ y, must produce a signal & accept an
- input (signal or data)
. may produce data
s
'_:':f |- —l Hyphenated Square:
.i;: | I external control construct
o i.e. switch, timer error handler
L - '
oo restrictions:
-}:: must produce signals, may produce
S
. .
-:;: datd, no input allowed
o
-ﬁi Figure 4 - Control Nodes
.':.
NS
’b"'.
[V
°: 73
¥
e ~ % - P PE LR L R ERSE s ST N S S S P P
T R o A AR B

-
- Data/Control Flow
.- Solid Arrow:
= Data Flow -

_— discrete values produced by any of

the above constructs are queued
(if necessary)
— - + Hyphenated Arrow:
= Control Flow -
- values sent controlling execution
S will have signal types:
e * event - immediate recognition
- * synchronization - processes wait
'l for other processes to "catch up"
Valves
Circle containing a valve:

. ' Control valve -
i control structure placed on data
o (3;) arcs enabling or inhibiting data
o flow

- Figure 5 - Flow Constructs
f Data Storage/Buffers
Parallel Lines:
55 Data Store -

N Storage area for generated variables
o~ and access area for global variables
S

Figure 6 - Data Storage
o
b
t}
b 79
G R A T AN A A P PRI

nodes differ from internal data nodes (transtormations) In they must not
contain both Input and output., whereas Internal data nodes do.

Any data node. elther Internal or external, has the same assoclated attributes.
The user need not know the value for each attribute upon Inttlal design.

o ~/he has the flexibility to assign a value to any attribute at any time during
the development process. The defanlt attributes with a data node are:

-Name

-Textual deseription
Lo -Priority

-Delay

-Forcer

-subseript

-Atomie

-# data imports

X -# data exports

Llach node of a craph represents o library module or a subgraph. very
node must have a name ndicating the operations the node performs. I two
y nodes should perform the =ame operations, they may have the same name.

However, 1t 1s not recommended that two nodes have the same name it they
pertorm different operations.

o

- Data nodes may have data input. The number of data Input parameters is
e et by the user. Associated with each Data Import will be its associated

- read attributes, These import values too must be set by the user. but will

assuime default values it not set,

Internal NData nodes, as well as external data nodes withont Input. niust have
data output. The number of data ontput parameters is set by the user,
Associated with each Data Export will be its associated write attributes.
These export valnes too must be set by the user. but will assume default

valnes if not o <et,

Assoctared with each data transformation will be data input. EFach data
N tnput parameter in oo node lias ks own associnted attributes. The defult
atteihntes Inelude:

Narne

Thireshald

Coo=tnge
e

~ Y Sl T = -‘J'r'r*u"v‘r‘.r‘r"r_-*,-'—w'-v--T

R ead algorithm

. Initializahle

. Datatype

‘. \alve

e Control Node Tyvpes: All control nodes must produce control slgnals and

may produce data. Internal control node accepts both data and controf
sienals as Input. It is depicted as a hyphenated circle. An external control

‘" node does not accept any input. It is deplcted as a hyphenated square. A
’ control node 1s used to control/direct the flow of data and control the
s execution ol specific nodes.
) Stenals ean simulate interrupt operations and syvnchronizations between
= processes. Theyv can be activated as well as deactlvate processes, I a node
'::f is deactivated, its assoclated input data may be deleted or saved. A
deactivation slgnal sent to a node transmits its signal to the nodes assoclated
Jdata Input valves. Hence. a deactivation closes the input valves ol a node.
o Associated with a deactivation is its save state. [1t Is true. the data on
the inpur data queuves 1§ saved. I it Ik Ialse. the data on the input data
f'_:j quenes s deleted until the save value Is reset to true.
Control nodes have the same attribute flelds ng data nodes. with an addition-
i al 1eld ot control stenals produced. Control Signal attributes are described
via the control are attributes. The control arc attributes ave discussed in
) detall In the below section - Control Arcs,
~

Flow Types: Data ares are stmply names associated with the queunes which
colfect diserete data elements afong a path. The attribuates associated with
u data ares deslenate the source and destination polnts ol the are. as well as

- the capactty of this quene. Hence, the detault attributes associated with o
s data are ares
» .
r-"‘
»"‘ .
Name
- sonree - loxport
- Destination - lmport
Capacelty
T SGie examples of NIEDSs Texperts”™ include advisors inoconstructing operation-
ab ateortthms. soltware mapping experts to map the operational nodes onto
7 \elo procedires, and hardware mapping experts that map the Ada procedures,
and hardware mapping experts that map the Ada procedures onto dilTerent
ladware confignrations., There mayv also bhe experts to address <oftware
e rensabibity and to perform simudations,

L] 81

S AT R T AT AN AR - - .] I R
P i ", A A ‘ - . A '-’J"f"""\'t’:"-,","l

A

e . ‘ = ‘s B A A S B A Aot Ao’ Bat 3

. .‘
>
. ::
B LY
:;« 16. Outline typtcal utilization costs for your system (cost of acqulring, using,
SRS
NN training, & malntaining it).
3&
The utilizatlons costs are TBD.
.
A'f" . (o -
17. Indicate the hostabllity (measure of degree of portability) of your
gt system.
\ ; . . . N . - —
W Che fiest version of the SIDE tacllity was tmplemented on a VAN 11/780.
:.:-: The craphies user-interface was wrltten tn Ada and the data base frame
oo Fepresentation was written in Prolog.
* e earrent implementation will be completed on a LISP machine. using
o~ common LISP and an expert system bullding tool written fn LISP. This
5 version will uitimately be hosted In the VAN environment.
‘::{
18. Decseribe how your system supports Interdisciplinary abstractions/represen-
L tations (i.e., systems engineering, software engincering, hardwarc enginecring).
o
’- _' . [4 &}
Vil ADN graph ean be used to represent any level ol abstraction. ['he node
:‘-'_, Gndd are attributes are then used to deflne the graph level. One objective of
:.:v‘ the <IDEF racility is to integrate svstems design by mapping the higher level
- node abstraction onto both the software and hardware modules in order to
(confieire o complete system.
S 19. 1llow complete 1s the methodology - do its principles embody
-A development methodology only
Ve
) -A design methodology only
:':-: -A programming methodology only
e -A project control methodology
'sj:‘ -A management methodology
o -All of the above
e
. At othe present time, the S Meility embodies o development, design and
'-{f prooramming methodolozy, 10 does pot currently cibody o project control
:-:' Gr nanngement methodolosy, but 1t ean he extended to inchude these also.
J“
9. 20. Deseribe how your system supports a team development approach.
> Il
SAN (Number of stations/users).
.":. ‘
’I. pe . . . T R .
N e <IDE freility supports o teamn development approanch hoth physieally and
S . . . N .
> foetealls . N central data hase Is ocerented that is accessible by oo ninber of
'Y
b7
iSO
n~
) ."
D) ."
1) -
.
3 g2
®
~.
A~
’ : .) o)
L R T A T L L P e TR G e T LT S TR N y. e O e 0 » ; ;
e e R T A P P PN S TR N S B OO N
\ Tl ~ ! 5 “'. AN N A ’\. .' 5 \' B .‘ a0 ln.i - ~ e 68 > l' a .!".!...2.) .'0‘!"‘3'! .:‘!"._. !'0 !‘l » !‘h' \‘.:..!‘..!‘l.-"‘!“

Y
N

v

users. The data can be made read only except to privileged users to protect
data Integrity.

Logleally. a defined graph consists of several nodes. which can be Indepen-
dently developed. Protections may be set so that the designer of a given
eraph node has complete access to the node data bhase and only read options
for the other nodes in the graph.

21. Describe how your system supports design trade-offs.

Onee a egraph s completed. a graph or ECSS 1 simulatlon can be performed
o measure svstem performance. It 1s then easy to change a node or lits
characteristies in the acility and have that change filter through the desien.
stmulations s rhen used to see the eflects on the system.

22, Indicate the range of problems to which the system can be applied.

The <IDIS tacility has been tarceted to support real-time multiprocessing
applications., but the methodology 1s not limited to these applications. [For
example, the SIDE system can be used to deseribe multiprocessing architec-
tures by using nodes 1o represent hardware modules. and the ares (o
represent data and controb buses, The node and are attributes would then
describe processor and bus characteristics, respectively.

23. List the names, addresses, and phone numbers of five (customers) major
users of your system.

The <IDE facility has not currently been commercialized and marketed.

~
.-\
J‘\
3
|
. o . U . B S A AT AT N
)-\‘_)‘.)'"*‘* ;w.r_&-.r\(T _‘\.._ _\? f,\‘w\a'\h-ﬁ'\.\‘ -IQJ' (NS .‘. "-r 3‘-".-.\.)-.4-

84

LI RS P RS T LT R B L e

»
W

- » - -
'f"u,"u," 2

s 3
.'.l. .‘\. A

.
'
.ﬂ

-.N__ . .- .
r-..—...- ..--...}JJ . -\\.‘.\.\ u-hnunr-b-\-wl ﬁ--f-... v'wJJ..u .-.._-r - ! ‘ 4..

R , RIS S oA - 7 &- r.:,.....w aa....:...- o ..w.-.-.r f)
\ R -v-.-c.c..v x\\-....-\ .ﬂ. AR ALk t-,-»n.~ .r \Jtﬂ- .--h -.\........‘ .-.-.-... _VO-.”\ rV

A%

Bl 3Pt

—a

PR R R XD

L

-y o,
S

el

0

TASC-The Analytic sSclences Corporation
Rosslyn Office
1700 N. Noore st.. Sulte 1220
Arlington. VA 22209

~ i VA

A v SRR NN P B
ASEE | - Badd

LN AL AP L I AL A I I) . U
S x'f\’_,.'\‘r s A
-

BN

e

S e

COLNEN

A
NN

>

- .

-

.-.qu
P el MUY

Lo S S Y

¢

~ l_‘. NOTY
P4 e -

RTINS

|

|

AT

P

2, %,

R ra

TASC-The Analytic Sclences Corporation (AdaGRAPH)

1. Describe how your system supports early detection of Inconslstencles,
closure and errors.

A wlde varlety of deslgn inconslstencles and errors are prohlbited by Ada-
GRAPH's (AdaGRAPH 1s a trademark of The Analytlc Sclences Corporatlon)
constructlon rules. No dlrect support for closure Is provided.

2. What type of progress metric does the system produce? Is It quantifi-
able measure of completeness?

Completeness checking of AdaGRAPH designs. elther an entire design or any
subtree of the deslgn. Is accompanied by a percent completeness metric.
This metrlc 1s based upon all attributes of AdaGRAPH design objects.

3. Describe how your system supports documentation, program management
and control.

Documentation 1s supported by the production of a varlety of reports:

graphlcal and textual module maps

design graphs

completeness analyses

global and local data dictlonaries

Ada PDL

various other textual views of modules (requirements, specs, . . .)

©C CcC o0 0 0 0

Program management and control may be enforced by the deflnitlon and use
of predefined Ada data types and program unit ldloms. Any policles may be
checked by means of the data dictlonaries within AdaGRAPH. Management
metrics may be tracked in manazement views of modules.

1. Describe how your system supports rcal time design.
Real-time destgn 1s supported by directly graphically modeling the tasking

aspects of Ada. and by representing the Interaction of an Ada system with
the operational environment n real-time terms (e.g.. external Interrupts).

37

L7 -f'ff TN e N, PP IRC R C I r.

%9 \n-'\.a"‘.“

\S‘

X
z
¥

't
-t e

-

)
¥

y v o
W Mo YA .a".f .
() ' . °

a‘x 1 &
LI e e s

PP A A

>,

LYy _'- _'. 4‘-

'@
O

s

1
.

ks LA
. @

A a8 s

e

2
Lt

AT)
L

«

o w ki

)
-

5. Describe how your system supports concurrency, parallellsm.

AdaGRAPH supports parallelism and concurrency by graphlcal rendezvous
attributes within the graphlcal edlitor. and by translatlon of processes and
thelr attributes Into Ada tasks.

6. Is your system constrained to a particular implementation language (Ada)?

Yes, at present AdaGRAPH supports Ada: however, 1t could be used as a
deslen tool for other languages which support strong typing and tasking (such
as Concurrent C).

7. Does you system produce Ada PDL?

Yes. [t produces an Ada PDL automatleally from a graphlcal system deslgn.
The PDL produced i1s comptlable and executable.

8. Describe how your systemn supports life cycle Intraphase & interphase
communications.

AdaGRAPH 1is intended to assist In the capture of requirements by dataflow
techniques, and to support the hlgh-level and detalled design phases which
follow by allowing the user to traverse the dataflow dlagrams annotating the
design components with ever more detalled software Information (such as call
decislons, «ata tvpes. ete.). In this way the transition between the three
phases may be arbltrartly detined by the user. Transitlon to codlng occurs
at the direction of the user.

9. Is your system automated, exccutable, compllable?

Yes: AdaGRAPH is automated. and 1t produces compilable and executable
textual Ada PDIL.

10. Describe the graphics support for your system.

AdaGRAPH 18 based upon the Graphics Environment Manager (GIEN 1s a
trademark of Digital Research. Inec.) which s similar In appearance to the
MacIntosh interface. [t Is a mouse-driven svstem, using drop-down menus,
feons, and Keystroke Inpits.

(¢
(€]

¢

-y w

11. Describe how your system supports concepts of:

-Early prototyping vs. rapld prototyping
-Software reusability
-Information hiding
-Packagling concept
-Abstraction

-Typing

-Evolutionary development
-Generlcs

-Macros

-Data flows

-Control flows

AdaGRAPH Is a process-oriented design system for Ada. As such It has
direct snpport for data flows and control flows as arcs within designs.
Control and data flows are not distinct arcs: a control flow s represented as
a purameterless data flow. or as the call sequence attribute assoclated with a
dara flow., Data flows represent the passage of data values in the system.

Simiarly. wplps Is represented as an attribute of data flow labels. that Is
the named data belng transferred from modile to module In the system

wirler design. Typlng is supported by the selection of a To-Be-Determined
CrBDY tvpemark, Users mayv add types on the fly to the llbrary packages.

Abstraciion 1s supported by the abstractional features of Ada (e.g.. private
tvpes), as well as by the use of higher-than-Ada-level program unit idioms.
{A\ task ldlom tor Interrupt handling abstracts the lssues assoclated with
interrupts at a level inexpressible In Ada.) Process and procedural abstrac-
tion are supported graphleally.

Information Wding 18 supported by a layered representation of deslgn:
VInGRAPH models a system as a hierarchical directed graph. [t Is also
~upported by methodological guldance.

Software _reusabllity Is supported In AdaGRAPH through reusabie. extensible
procram unit idloms and by mieans of the extensible catalog ol library units.

A A GRAPIH supports prototyping approaches and evolutlonary development hy
allowine relatively non-complex systeis to grow tnto larger. more elaborate

svetems. while providing code seneration across the effort.

o«
S
t
Ly
¥
I
E]
A
|
1
—

oA

‘.

WA

- \..-

N~.v- -, > Al
AdaGRAPH currently provides some limlted support of packages. [ull
o support for packages and generles will be provided In later releases.

xS

-

AdaGRAPH uses macros for generation of user deflnable and extensible

Sy

\-:: program unlt ldiom templates.

-,‘:_g

\"S 12. Is there a paradigm embedded In your system? If so, describe 1t
o briefly.

.

':‘_ AdaGRAPH supports the PAMELA (trademark of G.W. Cherry.

:;;:: Thought**Tools) method. but Is not constralned by I1t. The basic paradigm

._ Is svstem development by process abstraction, similar to structured analyvsis

"!" techniques, but brought up to date with Ada and the software englneering
prineciples behind that language’'s development.

A

"::j:'_- 13. Describe the external tools with which your system Interfaces (tool

-:::-' compatibility).

Q AdaGRAPH interacts with a large number of commerclal word processors/edl-

_ tors. AdaGRAPH Is currently coupled with a programmable editor called
T Brier (trademark of Underware, Inc.), and the Alsyvs Ada Compller for the
IBN-PC series,

14. Describe how your system supports hlerarchical decomposition and [(low

'a directlon (topdown, bottoms-up, both, etc.), architectural perspectives (designer
e creativity) and obJect-oriented design.
.:‘.'.,\
-'-:::-. AdaGRAPH strongly encourages hlerarchical decomposition by a layered design
b)Y representation. Flow Is generally top-down. although we support lImited
‘_-:.:-j bottom-up desicn: nse of llbrary units. and type Inheritance.
- AdaGRAPH provides o collectlon of system views: a structure-charr-like
,. module map. as well as the data flow graphs used to design the system.
‘::wj Object-ortented desien may be adopted for use with AdaGRAPEH. bat more
-}’:{ than Hkely that would be after the overall high-level design has been
s completed, and detalled deslgn 1s starting.
g
it
o.- 15. Is your system supported by formal syntax & semantics? Describe
B~ briefly.
SN
'.):'
N The craphilenl constrnets nsed within AdaGRAPH torm o formal. graphieal
‘-_’-
:.,-:: [ancunee. The semanties are a subset of Ada, and have not been fornltzed
DN .
" CAd =it been elther).
AT
[o
g. -
¢ *
\"')
AN (]0
ANl
0 :
l']
o
1

ol T
" et X

i

' " - o AT TR T A N e ATAT AT R « N\
‘»-A. ‘ o’ f-\. -~ (x,«.'-._,-.,__(.. ,_,*-_,. et SN o e KR

|>Qi) .A WA Ne -‘.l&,

=Ty

L3

R \'
11”1"' "‘J:‘f SR

v
"IAI
NP

O
s

" X' l:l’ ‘. l'
2p e

-

e
X

-

»
‘et
b 2 e I I

‘7h'4
e s

- - o
a 4 T
. f
. -“1.".'.

...-.A
' @
Ll

o =

L)

.
AT RN

PRt Tt
PN

% o
o 55"

@

-

PP Ly
L

“ @

48

.

RN

¥ ety
L

BN L

1 s

.

S s

A

P

P

‘l
o

/

Y

AN

<

)‘\

16. Outline typical utllizatlon costs for your system (cost of acquiring, using,
tralping, & malntalnlng 1t).

AdaGRAPH Verslon 1.1 Is currently priced at $9,875 (first unit)., $9.100
(second-f1fth), $8.250 (sixth-tenth), $7,100 (eleventh-twentleth). Slte llcenses
may be negotlated. Annual malntenance Is 1295 of purchase price. Tralning
has not generally been necessary. although a 3-4 day design workshop Is
advised. This can be arranged with vartous contractors. or with TASC. and
the cost wili be a tunction of the class slze and expenses.

TASC sponsors a -day Ada Productivity Workshop which Introduces the
user to the Ada Issues Involved In svstem design. as well as the use of
AdaGRAPH as a tool. The cost for that is approximately $950 per person.

17. Indlcate the hostability (measure of degree of portability) of your
system. \

AdaGRAPH is currently hosted on Ms-DOs (PC-DOsS). and as such will run
on o wlde vartety of machines which support that operating system. Ada-
GRAPH 1s written In C.

18. Describe how your system supports Interdiscipiinary abstractions/represen-
tatlons (l.c., systems engineering, solvware englineerlng, hardware engineering).

svstems eugineering with AdaGRAPH Is a sensible approach to system
prototyping. The deslgner mayv determine that a svstem component should
be developed in hardware. and ecan begin that development with an .\da
specificatlon of the component's capabllities.

AdaGRAPH 1s based upon the modern software engineering principles which
motivate Ada: information hiding. strong tvping. Hbrary units, ete.

19. How complete is the methodology - do its principles embody

-A development methodology only
-A design methodology only

-A programming mecthodology only
-A project control mecthodology
-A management methodology

-All of the above

ANEGRAPH 3= o desien and development system for process-oriented syvsten
development. [0 oallows some dexibillty inomethod. Tt embodies o siriet

91

R N e P I SR . T N, T S L T
Nty _.h W B e 0 A P %
., 3 . - N L) L]

R Y bt
N alb G i

L ‘b o'l

AD-A194 335 PROCEEDINGS OF THE STRATEGIC DEFENSE INITIATIVE 2/’7
ORGANIZATION (SDIO0) TOOL (U) INSTITUTE FOR DEFENSE
1 ANALYSES RLEXANDRIA VA D HEYSTEK 84 MAR 87 IDA-M-308
UNCLASSIFIED IDA/HQ-87-32084 MDA9G3-84-C-8031 F/G6 12/

[

'FEEE

|
0

MEEE <
W@Emmh&\: “l”ﬂ

20 =l

—_— _— .\.../U.l@

Tt ey
PSS
RN

. s
-\.-q-p-\ S e w4 A . et

s
& 4
r’a‘ ‘.*

vty by Yy

‘.
[N

8 .
- . L UELEEL L O

o2

Ml

(SRR

[
[gl ’
R

sl

® -
t i

' 3
y o 35 AW
Pl 2 i e B |
[N W
vy ¥ ¥
APPSR

L I IV S

h

g‘l

notion of project control. but currently has llmited management method
constralnts.

20. Describe how your system supports a team development approach.
(Number of statlons/users).

[t 1s possible to use AdaGRAPH on a network of workstatlons (with a
modern disk server and supporting transparent file access) and thereby
support team development. On a single workstation, only a single user at a
time may be at work. and on a non-networked workstatlon many users may
he supported seriallv. Top level prolect deslgns may be copled to multiple
workstations permitting team members to work on different system compo-
nents.

21. Descerlbe how your system supports design trade-offs.

Trade-offs of software versus hardware components are supported as described
in 1R, above. Other design trade-offs would have to he managed by the

user.,
22. Indicate the range of problems to which the system can be applied.

AdaGRAPH Is sultable for Ada svstems design and development In general:
from embedded syvstems to business applications.

23. List the pames, addresses, and phone numbers of five (customers) m:jor
users of your system.

a. NMr. Dan Wilkinson
NleDonnell Douglas Aerospace
Information Services Company
5301 Bolsa Avenue
Huntington Beach, CA 92617
(T14) R96-5147R

b M. Rich Connally

Nl Stop k32

Westinghouse Defense [Flectronies Center
P. 0. Box 746

Baltimore, ND 21203

CI St N I T T S)
Cowty . ‘{\.’\":ﬂ".l‘\’ .-;\Jn‘

Mr. Don King

VITRO Corporation
14000 Georgia Avenue
Silver spring. MD 20901
{301) 231-2159

Mr. Terry Nicholson
Dept. E-t15, Bldg. 598, Gate 599
3 MceDonnell Douglas Astronautics Company

~
: _ Hichway 94 North and Harpoon Drive
Nt. Louls, MO 63301
e (314) 925-6650
K-
- e. \Ms. Elizabeth Brinker
- Code 322.1
F ¢ NASA/Goddard Space Flight Center
A Bullding 23/E-129
if Greenbelt., MD 20771
QO (301) 286-3129
-
(L%

F.’
[A A

W

EAPANEY ¥ CRr Rt Rl RS)
»
-

-,

I‘-.
¥ e
s
L
Ew -
- 9‘-}
+
Y
q
". ;‘.
'l’ - - P -« s - -~ - . B - - 'F
T g L R SN YRR R R S . J, BT
AT RN AN i} _J_I_.f o -f.*.l'\-'_l'")-f\ ‘.'_.a-. ..r > .r“.f_‘f ,("'J‘ 2 .r o) ol ;l“.# w(,‘ -l‘ ',

it v
:'-' . v “ "
RAMIr

]
S, s

Fl
[y

LA APNEN
A

LN

>

syvscon Corporatlon
3990 Sherman Street

san Diego. CA 92110

25

A N T AN
) x\.\' N N .J-m. " ..-‘!.

‘!‘4 2L L N A

A AN

Mo TNy N
"""J‘"-f

R X

AT
ACVEACR

s

NN

PUFAEAN

o |

e,

-'\- '.-

DI

AN Syscon Corporation

(M1

,_.:-: ~ 1. Describe how your system supports early detection of inconsistencies,

ot = closure and errors.

o The SKETCHER tool formally applles to high level software design activities.

v { In this capacity, SKETCHER assists with the development of the Top-Level

l{.-_{ ":: software architecture and subsequent deslgn refilnements. SIKETCHER

:": ” supports the early detectlon of Top-Level design anomalles by 1) the enforce-

::.: e ment of the Ada language semantics and syntax durlng the Object Orlented

~Ta :Z_* Desivnl Diagraimn generation process, and 2) by the generation of compilable
PDL files that accurately reflect the respective deslgn dlagrams.

"y '_.

}:‘_: The PEP tool tormally applies to the Top-Level and Detailed-Level deslegn
::‘;: activities, The output of the PEP tool Is an enhanced PDL prototype flles
:.:', ‘f:; thiat s 1} compilable for the verificatlon of the corresponding PPDL representa-
¥~ tion. and 2) executable to support correctness valldation of the design art

these level.
2. What type of progress metric does the system produce? Is 1t quantifi-

able measurc of completeness?

- D The SKETCHER and PEP tools produce boolean type progress metrics. which
-:-:. . assess the consistency and correctness of the current state of the design.
o Progress is measured by 1) the compilation of SKETCHER produced PDL
-'.— l" . . -
,'.-, (with no detected errors). and 2) the compllation and execution of PIEIP
produeed enhanced PDL prototype(s). In utilizing the results ol a prototvpes
1SRN execution. progress may be further measured (or quantified) based the number
N of design requirements satisfied.
’.I
T
| :-_,;f ::,,- 3. Desceribe how your system supports documentation, program management
L and control.
L ~
e
. The SNISTCHER tool directly supports desten documentation activities in that
::-; the craphie Object Orlented Design Diagrams and the corresponding DI
»ﬁ ey representations are consistent as desien iteration and refinement activities
. .
T GECr.
o. |
a¥
Y
SOSE |
u:;-
pon”
v
v,
AN
e
S
SO 97
v
.*:
o

8 a K
P

%

Al
s

NXANNA -
AN A ." -'.

SRS
PNy
'.',\{‘s' ‘.{‘S NS

a 2,4 ‘} e o
4 /‘-{‘:‘lv/‘:‘l *m

. —y
LaLY Y
AR XA ¢
YoHSYNSS

f‘-

\
o
1.

a

L5,

4 PR
ec’..‘, i
*y Ty PP R
W ST

.
t

rr ey
» >

._.1
v

@
['l.l

k .I}&

LYY

@S
'Dv‘l.'

P

sty
PSR S LU L NN

.
Ey
<

)
'f

Al

"f‘-l’-.).'

Both tools Indlirectly support program management and control in that they
operate on Ada compllation unit boundaries. Glven that DoD-STD-2167
CxCIl. TLCSC, CsC. and LLCSC terminology and cdefinitions map to Ada
compliiation unlits, then the deslgn generation. verlfication. validation. valldation
and documentation output products of the SKETCHER and PEP tools
support program management and control activitles.

4. Desceribe how your system supports real time design.

The sSKETCHER and PEP tools are generally applicable (o any Ada soltware
development project. They are not limited to. nor exchuded from. use on
the development of specific software applications. The requirements that
drove the SKETCHER tools development (lLe.. graphlc conventions and PDFE
generation requirements) were formalized on a research and development
project involving the use of the Ada language n the development of commu-
nication svstem software. This development fook into account the employ-
ment of o lavered architecture. the implementation of standardized protocols,
prioritized concurrent processing, common dynamic bulfer management
timing services,

Both SKIETCHER and PEP provide the means to express the requirements
and mechanizatlons (e.g.. size and thme constraints, parallel processing)
assoclated with real time software. PEP In particular. Is designed to address
the risks associated with real time software development. by permitting rapid
prototyping ot critical algorithms. hmplementation strategies. and interfaces.

5. Describe how your system supports concurrcncy, parallelism.

The SKETCHER and PEP tools support the syntax and semantics ol tasks,
as speclfled by the Ada language. as follows:

The ~SNETCHER tool provides Interactive commands lor the dectaration of
tasks and the inclusion of task body structure skeleton statements within the
cenerated PDEL Tt does not support task types or objects, although this
capability 1s o planned tool enhancement schednled for PN TORT.

The PP ool supports the fall ranee ol paratlelism supported by the Adan
Paneuage, extended to provide Tor execeution tracing ol task nctivation.
termnination. and rendezvous events, U aflso provides Tor the time stamping

oA rendezvons event occenrrences,

28

- - m,E N "

{"‘P."a'.-"-’ﬂ’ " A-rn,l n ..' : » L4
200 N o ‘Q'*") ,!'l?n‘l‘c.o\u. .‘,n, "% .:'0’!'1‘.. L%

. “u s -y n) v ‘.-h " - Ly -
AT T B L S L
8 AN NN N NN

L]

r_r
o

6. Is your system constrained to a partlcular implementation language (Ada)?

Yes. Both the SKETCHER and PEP tools are strictly limited to the
semantics and syntax of the Ada language as specitied by NMNIL-STD-1815A.
In the case of the PEP tool. the PDL representation that can be submitted
to the tool 1Is extended as per the grammar presented with the response to

question 7 below. Furthermore. both tools are Impiemented In the Ada
language.

7. Does you system produce Ada PDL?

The grammar to be used by PEP consists of full Ada angmented by the nse
ol embedded English comments which are contalned within square brackets
("0 English |7). A subset of thls grammar. shown below n Backus-Naur
form. Hlustraies the application of the square bracket notation. The syvmbol
"=2>" has been used to highligcht the location where the square brackets
notation has been insertea into the Ada language. (See Flgure | on e
following pages) .

8. Describe how your system supports life cycle intraphase & interphasce
cominunications.

Fleures A and B tllustrate the generalized activity rlows associnted with the
use of the SKETCHER and PEP tools. The tools were desigcned to accon-
modate the highly lIterative activities assoclated with the software development
process i general. The scope of the flows (le.. interphase or intraphase) are
user and/or methodology dependent and are not llmited by the tools’
characteristies or functionality. The use ol graphics and PDIL have historieal-
Iy proven to be efficltent and effective means of cominunication hetween
development phase activitles, between development group members, for
internal reviews, for formal reviews with customers, ete.

9. Is your system automated, cxecutable, compllable?

Yes, Both SKETCHER o PEP are atomated and exceentable tools,
Huplemented in the Ada language. Both tools produace compilable DL (les
asooprodinets, and i the ease o PR, the output product is an executable
and enhanced version o the submitted PDILorepresentation,

R L

ST e AT R R T RATRT RT RN OO S Wy

v _ ALY o
N AR v

SQUARE_BRACKETS ::«
“(any english language structure with no
embedded quotes or brackets }*

SUBPROGRAMS

SUBPROGRAM_SPECIFICATION ::=

procedure IDENTIFIER [FORMAL_PART] 1!

function DESIGNATOR (FORMAL_PART] return TYPE MARK
FORMAL_PART ::=

(SQUARE_BRACKETS) !

(PARAMETER_SPECIFICATION

| : PARAMETER _SPECIFICATION})

__ STATEMENTS

S Ry U N Uy N WU Y U WU W W OWT WY W BT v oW vorw v

SEQUENCE_OF _STATEMENTS ::=
STATEMENT {STATEMENT)
STATEMENT ::=
{LABEL} SQUARE_BRACKETS !
{LABEL} SIMPLE_STATEMENT !
{LABEL! COMPOUND_STATEMENT

EXPRESSIONS, ET. AL.
EXPRESSION ::=
RELATION {and RELATION} 1
RELATION {and then RELATION} !
RELATION {or RELATION]} !
RELATION {or else RELATION} !
RELATION {xor RELATION)

SQUARE _BRACKETS
SIMPLE_EXPRESSION

(RELATIONAL_OFERATOR SIMPLE_EXPRESSION)
SIMPLE_EXPRESSION [not] in RANGE 1
SIMPLE_EXPRESSION [not] in TYPE_MARK

DECLARATION

DECLARATIVE_PART ::-=
. BASIC_DECLARATIVE_ITEM! {LATER_DECLARATIVE_ITEM
BASIC_DECLARATIVE_ITEM ::=
SQUARE_BRACKETS
BASIC_DECLARATION |
REPRESENTATION_CLAUSE !
USE_CLAUSE

C OGENERICS . Ll L
GENERIC DECLARATION ::
GENTEIC SISCITICATION
GENSRIC SFECIFICATION
GENEZIC _FCAMAL PART SUEFROGRAM_SFECIFICATION
GENERIC_FORMAL_PART PACKAGE_SPECIFICATION
GENERIC_FORMAL_PART ::=
generic {GENERIC_PARAMETER_DECLARATION}
GENERIC_PARAMETER_DECLARATION ::=
(SQUARE_BRACKETS)
IDENTIFIER_LIST : {in [out]] TYPE_MARK
{:<EXPRESSION] ;
type IDENTIFIER is GENERIC_TYPE_DEFINITION
PRIVATE_TYPE_DECLARATION
with SUBPROGRAM_SPECIFICATION (is NAME]
with SUBPROGRAM_SPECIFICATION [is «»] ;

Fiqure 1
100

o

¥ ARSIt e
l\)"." o Ty Uy,

\':-.'ﬁ'\j\"."\(x

RN o
JQQQQQQA:X;d;ﬁHQX:xL

The Ada PDL grammar summary given above supplements that of the
Ada language itself, and is used as the criteria by which the
correctness of the syntax of PDL being processed is judged. The
following are examples of the correct use of square brackets in
Ada PDL. :

with TEXT_IO ;
generic
[generic parameters are yet to be defined]
procedure ADA_PDL_EXAMPLE
([input and output parameters to be defined]) is
-- This procedure is example of the use of square
-- brackets to defer detail during PDL writing.

[type LOCAL_TYPE is not yet completely defined]
type NEW_INTEGER is range [lower to upper values] ;

begin
-- start processing
([initialize the system)
TEXT_IO.PUT_LINE (" hi there novice user ") ;
-- complete processing

[shut down the system]
exception
vhen others =>
(handle errors appropriately |
end ADA_PDL_EXAMPLE ;

Fiqure 1 (cont'd)

Q¢mm—mmm—m—m= I Ada Graphic l€mmmmm e m e = o

I | Notation Designl -

v I Representation | [

Review = -—----------mmmmomo !

Feedback [

I [

v mememmemmm e ——m— - |
O---~-=--=~-- » 1 SKETCHER |

Requirements ~----------- >} Graphic Design I1---------- >0

O-----=-—-~-- »1 Tool | [

T |

| [

Design I

Verification I

Feedback @ = --------------~---- [
" | Compilable [

| ! Design PDL I v

O¢-m——=m-~mm—= | Representation |<-~--~----—-- o

Figure A ADA GRAPHIC NOTATION FLOVWS

SN
L

5 8

P

‘)-
L)
o

L l.!.
M T)
PRI

v
b

PSP
» 5,

)
O WY

.*.-.

> o
e Y

ANPOER RN

"x.".‘:\. ()

- -

ATy

et

L
- - LY - -.‘AA\,-‘.' »

O~ T e e e - o
, -
V. mmemmmem e !
‘ O-~-=~=-—===-=~ > Ada PDL I e e
Requirements ------------ »1 Design l--->1Compilation!
O-=--=m--m- »! Representation ! = ---------o--
__________________ |
v
B Design
Design Test Verification
Feedback O-m-mmmm e >
B v
j ! Design
D951gn I Transformation
Validation l (PEP)
__________________ |
l I Executable [\4
O¢—=m-mmmm—— I Design PDL Jemmm — oo -0
| Representation |

102

P TSP T I A rE AT R (W U LT W U W W W™ m T v omom rm— ._,1

«w
S

10. Describe the graphles support for your system.

The sSKETCHER tool is an Interactive graphles design tool that supports the
development of software architectures and subsequent deslgn refinements.
SKETCHER currently operates with a Tektronix 1107 serles bit-mapped color
graphics terminal. The Ada Graphle Deslgn Notatlon utilizes leons that are
dertved from the works of Booch's Object Orlented Design representations
and Buhr's graphic conventions.

tl. Describe how your system supports concepts of:

-Barly prototyping vs. rapid prototyping
-Software reusability
-Information hiding
-Packaging concept
-Abstraction

-Typing

-Lvolutionary development
-Generies

-Macros

-Data flows

-Control flows

Farly prototyping and rapid prototyping are supported by the SIETCHER
and PLEP rools. SKETCHER provides an interactive tool tor the development
ol proiotype PO sKeleton shells which ront ends the PEP tool. This forms
A anronuded means for the development of experimental prototypes (possibly
during the reguirements definition phase) or more formal rapld protouyvpes
that may be cenerated o the desiecn or coding phase of a development.

soltware reusability Is supported by the SNETCHER tools abillty o interac-
tiveiy ceperate software architecture components that address reusability dssnes
Mieh o~ the doenlization ol specilie hardware and/or operating systeni

interfee= 1o unique paekace areas).

Informacion Liding is supported by both tools by their abllity to both hlde
ated ddeter deradiss Loeal e, 1o a package) information can not bhe eeessed

withoar belpee explicitly exported, Both tools support the deferral ol levels of

derail, which are unfmportant at the enrrent desien level.,

it
vae
P :"’u

2 s>

(g

[

A I A
u'l'v':'r'v‘i.
SR
et

el

e N0,
L A)

'y

LA
Al

]
D

Oy

.

e,
s o

@

R i e, tat 3 L el “Aaa'A aNE gV SFA- ok o ha- hiadoet T~ W ™N ‘H"?‘W\"L"\.‘V‘.VYT‘V*WK'W'“

Packacing coneept is supported by the SKETCHER and PEP tools by the
dherencee to the Adn language package feature as specifled by the Ada
TSR HTIEN

\herraetion Is supported consistent with the Ada Innguage.

Popine s ~upported consistent with the Ada language by PEP. Thls support

oenTendhed to tnetnde the ablllty to examine and set objeets of arbltrarily

cmpdes ot tvpes. SKNETCHERS support of typing is fimlited to the
Pl ilearhon of Key ddarn types, which Is often critleal even at architectural

el ol he desion precess,

ittty clevelopient Isosupported directly by SINETCHER by the use ol
coteratioead TTHRDT tvpes and objects,

Costeries e <upported by the SKNEETCHER and PEP tools by the adherence
e N Dingnnee cenerie feature as o specified by the Ada Innguage,

Nl s e b supported by SKETCHER oF PEP.

Dy Dosvs and ssoctated anndysis activities are supported by thie prototype
G irneing options of the PEP tool,

Coore s Uoas e supported hy SIKETCTHSR throueh the ability to indieate \
~abgroeram ol taskoentry ealls on the dineram. PEDP supports the process- “
Do ol Al orms of flow control. 1

12, Is vhere n paradigm embedaced in your system? I so, describe it
briefly.

Theve are o paradigms budlt directly into either PEP or SKETCHIEER.
Flovwewer, the User™s Nlanuals o both provide nsage eubdelines which, when
Vo cveds resalt in sientfeantly tmproved productivity and desiens,

13. Deseribe the external tools with which your system interfaces (Lool
compatibilivy).

P ~IUTCHIER e PEDR commnente with other syvstemn tools throneh the
Soctanedard test Mess whieh eontain the Nda PDI beine produced o
e reeeeesed P B Tiepleneenred thronch the atilization of Ado's
PENCE JO cagpebitinie=0 0 Ui~ echmndzations permits SKETCHER and PP e
S e b oariet s 0 et teals firehinding tools sucelhr s tend

P s cn o o e

124

111. Deseribe how your system supports hilerarchical decomposition and flow
direction (topdown, bottoms-up, both, ete.), architectural perspectives (deslgner
creativity) and object-oriented design.

SIETCHER was destened and developed to specifically support obJect-oriented
Jeslon for Ada software. The graphleal design commands supported by
SWETCHER Inelnde both topdown (e.g.. creatlon of a subprogram within an
~Xisting object) and bhorttomup (e.g.. creation of a package or subprogram
cnespstlating existine objeets). The designers flexibility/ereativity Is tarther
supperied by the abillty to move and resize objlects anvwhere on the diagram
whiteh wonld not result in illesal Ada svatax or semanties, SKNETCHIESR's
Cneand repetoire tneludes all the commands necessary to support any
feccpeosition rechnigque,

I3

arocessine (Les, comptlations), 1t supports any design varlation possible. Tts

cose PEP processes Ada PDL without any constraint based on past
Sedbiliey and adaptability permit the rapid prototyping ol alternate design
neepts, therehy encouraging the designer’s creativity in «developing the finnl
fesicn ~chition. PEP'S support for various tyvpes ol hierarchal decomposition
s essentinliyv o equivalent to that of any conforming Ada Program Library (e
v nre noo restrietions except oon o compilation order).

15. Is your system supported by formal syntax & semantics? Describe
briclly.

Yos, o PPEDP oand SKETCHER support the generation and processing o a
Sy defined Ada PDLE whieh 1s defined in Bacus-Naur form (see the
pespacllse o ospestion #7tor A summary of the grammar) and has been
vertfied using varions analysis tools. The ObjJect-Orlented Design Dingram
conventions (which were adapted from the works ol Buhr and DBooch) are of
Hecessity formal. to permit the on-the-1]y semantles checking which Is
ertormed by SKETCHER. The formal definition is siven in the SKETCLH-
PR U Nl

16, Outline typieal utilization costs for your system (cost ol acquiring, using,
vraining, & maintaining it).

SINETOTHSY e PERE are both carrenty proprietary tools ol SYSCOND aned
el o cost o the ~oftware is ocurrently net available. The Tollowing

criatien renmiretnent = e nominal based on SYSCON'S Internanl experience,

e

-
2

%y
RPN
Sl

o

e
Nl)

1

R

Iy

oy

AR

> .

@

N
Y

S
.

S

.

[

5

4

i Th

[

a_a,

>
.

N

»

"

P

a0 S
e

YT S Y

N J

L

W .

B
o
]

> 1
a

Pl
s &

P A

& 3
. % S’

44

SsKETCHER
Required Hardware:

Graphles Terminal (e.g., TEK 4207)
Graphles Printer (e.g., TEK 1696)
Required Software: None

Required Tralning: Approximately 4 hour class

(proficlency takes approx 1 week of use)

PEP

Required Hardware: None

Required Software: Compatible Ada Compller and Command Language
Interpreter

Basic Usage - 2 hour class

Advanced Usage - 3 day class

Required Training:

Required Expendables: None
Notes: An ANSI style terminal wlll improve display
eflficiency during prototype execution.

17. Indicate the hostability (measure of degree of portability) of your
system.

Both SKETCHER and PEP are written In Ada to obtaln the maximum
amount of hostabllity possible. SKETCHER contalns no system (Lost)
dependencles and should be nearly 1009 rehostable as 1s (this has been our
experlence to date). PEP utilizes the host Ada compiler and lIs partially
written In the host’'s command language. The Inter-program communlication
mechanism and command language facllitles used by PEP are all very
simple. to minlmize the effort require to rehost the tool. The balance of the
PEP software s written In Ada. and should be 1009 rehostable.

18. Describe how your system supports Interdisciplinary abstractlons/represen-
tatlons (l.e., systems enginecring, software engineering, hardware engineering).

SYSCON's tools vse the inherent capabliities of the Ada language to provide
for interdisciplinary representations. At the top-level of system design or
engineering, SYSCON typleally uses "virtual packages™ to encapsulate fune-
tlonal requirements. without necessitatlng a commitment to a particular
tmplementation method (e.g.. hardware or software). The utllization of Ada's
Interface definitlon mechanisms provides a method for capturing the detalls of
the current level of abstractlon while deferring declslons about lower fevels,

116

P A O Foat o et A
. “ &__f,,,_\ A AR N
MANE LR AN A N A A s

O e R R L U A s BAEAT A N
-(‘}Vb'*'-‘-’"q‘"‘\‘.*‘ ot TN
. N . A R 3 N .)

..".
o

b

~

BT S A R
o ’.f:‘.a '.f:‘d':‘f.'n"f

P AN

19.

How complete 1s the methodology - do its princlples embody

-A development methodology only
-A design methodology only

-A programmling methodology only
-A project control methodology
-A management methodology

-All of the above

of the software methodology utillzed by SYSCON s
presented In Figure C (on the following page). This methodology s strongly
orfented toward the clted development methodology category. The SKETCH-
ER and PEP tools, together with a validated Ada compller, are the primary
development tools components of an APSE currently utilized by SYSCON for
the development of Ada software.

A lhlgh level overview

Other tools that are also part of the APSE are presented In the table on
Fileure C. These facllities are included for completeness in the presentation
of the methodology. Specltle detalls of the APSE tool facllitles, with the

exception of the SWNETCHER and PEP tools.
questionnalre.

are bevond the scope of

20. Describe how your system supports a tcam development approach.
(Number of statlons/users).

Both SKETCHER and PEP are multl-user systems which can be used by
inany destgners as the host hardware Is able to computationally support.
Integration of several teams/individual efforts 1s accomplished at the program
Hbrary level (e.g.. through compllatlon of the Ada PDL). The absence of a
butlt-in configuration manacement scheme perinits SKETCHER and PEP to
ported to a wide varlety APSE=s with mintmal Ilmpact on existing CM

as

he of

syvstems.
21. Deseribe how your system supportls design trade-olfs.
SKRETCHER
difterent
all requirements,
destener an opportunity
aned

both oives a designer the
architectures prior
PEP's ability

to perform

One ol the motivations of
eapabtlity

committing

prime

to develop and evaluate deslgn

which

prototypes

many

to the one best addresses

the
data

T cenerate
derailed

raplid uive

evalunation of algorithms. striernres, approaches prior to

fill-~cale developtent.

107

s DA A #'-r,_.—_r,.

"’JJJL

R TR R

Lo

Wi W WL WU .. T T T§ W
H "E'!"."E'! !‘l.‘!‘ .".'.l!'!'_’.!!'!l!'ﬂ'!'!'ﬂ'l'!"'l”'l'!'!'ﬂ'!l'ﬂ'!! o U AU TR T

I'd

| ¥ -
’.
X
oy DOD-STD 2167 Development Parallel/Support Appliocable
i __Level Phas
N Pre-Software Conoept Ada Development (1,2,3,4)
Y Development Formulation Environment 1(5,8)
ﬁ Indootrination 1(7,8,9)
o~ ! I
o v |
Software Requirements Standards/Metrics 1(7)
Requirements Formulation ! I
Analysis v I
Softvare Rapid Prototyping |
Arohiteoture I I 1(5,86,11)

(Graphs,Compilable
PDL, Exeoutable

|

{

|
v

I
|
Prototypes) [|
! |
Preliminary Top Level Formal Design | 1(5,6)
Design Design [Graphs, I 1o 1(8,9,
Compilable PDL, | [t 10,11)
Executable l v l
Prototypes) [v I I
| Informal | |
Detailed Detailed Level ! Test & I 1(5,8)
Design Design [Graphs, ! Integrate! 1(8,9,
Compilable PDL, | [1 10,11)
Executable i (I [
Prototypes] ! I !
v Vo {
Coding & Code ¥ Debug Develop Code! | 1(6)
Unit Test [(Coding ¥ [1o 1(8,9,
Transformation ! I I 10,11)
Guidelirpes]) | I !
\ vV I
CSC Integration Test & Integration Formal Testing ((6)
Test | 1(8,9)
! |
CSCI Integration i |
Test v |
Evaluation Software Metrics l(8.§0,
! 111
Maintenance 2’4)
Figure C ADA BASED DESIGN METHODOLOGY OVERVIEW
MAPSE DEVELOPMENT SUPPORT
TOOLS TOOLS
(1) ada Compiler (5) SKETCHER (7) Drafter
(2) Source Line Editor (6) PEBP (8) Ada Statement Analyzer
(3) Library Management (9) Pretty Printer
(4) Debugger (10) Abstraotor

(11) Ada Architeoture Analyzer

Ay
.

.

v/‘ 'J

.
]
¥

22 Indicate the range of problems to which the system can be applied.

PEP and sSKETCHER are generic software development support tools
applicable to development of systems of all Kinds. In certaln circumstances.
tor example the development of a trusted system using a specification
language, standard procedures may have to be altered somewhat. Any
system which can be developed using Ada PDL as part of the design process,
can successtully utilize SKETCHER and PEP.

23. List the names, addresses, and phone numbers of five (customers) major
users of your system.

Both PLP and SKETCHER are proprietary tools of SYSCON Corporation.
In that role. they are used to support SYSCON's ongoing Ada activities, and
are thoroughly Integrated into the SYSCON Ada software Development
Nethodology.

110

- .-uun.n.-dl

l. "
\J SN .r..,.

DA TN .,.(

J-I...-/.vf

AR NN lh

S R) SO

2
1 3

1y ety !

AP
"
A

Ir-w'*. ‘y-lr
.0~. Ty ‘I l.'-

-
et A

34)

"2

'»

.

L SO,

-

»
o

)
L]

’h .’4‘

-
e,

v,

«

&

i

S Rat da= Aat S bbb ol sl ANE At 4Th L

SofTech
r 160 Totten Pond Road
Waltham., MA 02254

Yy

«

UK ’

3k 4

-

“m
v,
-,
»
_ 111
12
A AT TS
AR TN
FN AN,

il A A M A il bl il Rt el b S B A AR A Al i A Ah a0k BV AR UL gtg Ak o i ave atE LVe ud SLs 4 s JAd ARLahA 0 smd gds aba afh ol yv\"T

‘ L'{v" ".'I' "'I':'.l ‘1.l 1

P

?
APLPCS

>

)

112

S
ah

o oMo o A ot 7 P A Ao S S

.rﬂ > ‘a'\:-"

hal e s ol ~al ~Aue Rl AFc RVa Rva L‘T

@

1Y . & 4 “'
RS
2

P4

SofTech

NOTE: The system that 1s described In the followlng answers is the AGDS.
some parts of the system have been prototyped using IRAD funds as a
“proof-of-concept”™, but there Is not yet funding for a complete system. and
no plans to produce a comimerclal product.

NOTE: =ADT 1s the name of the original method devised by SofTech. and
IDEFO 1s the publle domain name. The terms are used interchangeably In

this discussion.

1. Describe how your system supports carly detection ol inconsistencics,
closure and errors.

There are two forms of consistency checking. [First., the IDEFO drawing
package prevents the user from drawing illegal IDEFO diagrams (such as
arrows o boxes in the wrong place), Second. we have developed the <et of
riles for cheeking global consisteney (duplicate arrow or box names. diagrams
with external inputs that don't match the parent. etc.).

2. What type ol progress metric does the system produce? Is it quantifi-
able measure of completeness?)

No response was provided for this question.

3. Desceribe how your system supports documentation, program management
and control.

IDEFO s designed to include a documentation svstem. As such. the
complered AGDs would include the IDEFO documentation. Ifurther. 1t s
planned that the system would allow Ada code. including conmments, to be
hicklen behind the IDEFO Information.

-

1. Describe how your system supports real time design.

-
-
Iy

N presponse was provided for rhis question.

PSR

22

5. Describe how your system supports concurrency, parallelism.

IDEFO dinerams normally contain no information about the timing of events,
<o That Imnetions ean happen consceutive or concurrently, AWe have extended
the DO diserams to inelude thinine information. <o that the user ean

Speeily o concurreney,

113

& e A T T e A" e " a
DAY NN

g o o a a Ca tf u CaM o o o T M Ty W Ay o o o -
NN Y "’;_\P".r; %,‘\t;:\,qdﬁ Y Nt G N
S WouEA N BT e 0 0P, . y J

TN T TSR W A T ey

1,

N
I}:\
.Y
’_
e
o
ol
T 6. Is your system constrained to a particular implementation language (Ada)?
e
” Much of the system (IDEFO construction, consistency checking., simulation.
NS ;
s ete.) 18 language Independent. However, the method used for the tinal
e translation to PDL 1s currently based on Ada.
At
ey
& - .
‘ 7. Does you system produce Ada PDL?
. Yes. [t produces a compllable supetr-structure of an Ada program.
__.\ 8. Describe how your system supports life cycle Intraphase & Interphase
" communications.
u‘\- <
S The entire «design process 1s cdone by using behavioral IDEFO. These
"_v'?j- dingrams ean be veritled. simulated. reviewed by others, and checked for
- reusability,
.\:.
v Onee the design enters the programming phase. high level Ada code is
) N - .
Lo antomatically generated. which can be filled in to produce running programs.
::- These programs can again be simulated.
-~
3
S .
e . X
o A~ rthe systemr enters the maintenance phase, running programs can be
. returned to rthe IDEFO semantic database for purposes of documentation and
" reusability,
—\.
h_-'f 9. Is your system automated, executable, compilable?
-
The <y=tem Is planned as an automated system. producing compllable Ada
,,i"l coye,
N
ii‘-'
N 10. Describe the graphics support for your system.
"
A
l Destan aned review are handled by o graphies front-end. Running on an BN
’:_ PO, stmulation nlso ntilizes graphics.
N
.
. 11. Deseribe how your system supporls concepts of:
Pt
@. -ltarly prototyping, vs. rapid prototyping
oy . .
"y -Soltware rceusability
“..'J .
'_.\,:; -information hiding
g -Packaging concept
o
o -Abstraction
o Iy ping
-
.:::.
\-’
I‘ 4
LN 11
®
u;-
«.3. -~ " -\‘\'-'-*‘ "~ O N
N A NI P O N S N A B A J A S Y S AL T T RN e %
- “~ AASASL LR SS SRS LA Y A LA Y
R NI AN ST W -

O lndns,

-Lvolutlonary development
. -Generlces
' -Evolutionary development
) -Generics
. -Macros
pas -Data flows
- -Control flows
n
- software reusability Is planned to be handled by access routines to a IDEFO
Jatabase. The user has the abllity to browse. request speclific routines. rind
o reusability information, and look for common functions.
Intormation hiding is done by using the hierarchical structure of IDEFO to
' hide lower levels of the desien. FPurther, the svstem will be able to hLide
- Ada code within the SADT dlagrams.
j:"f Packaging s used in the ceneration of the Ada code. FEach box within an
a IDEFO dingram becomes an Ada package.

Typing Is u<er controllable.
Gieneries are implicit in the conversion methodd.

-Data and control flows are both supported by IDEFO.

12. Is there a paradigm cmbedded in your system? If so, deseribe it

) briefly.

- The most efficlent way to bnlld systems Is to design In behavioral IDERO.
fonoring programiming considerations. This deslgn requlres graphics. worksta-

- tions. =fiulation, veritfieation. review, and reusabiiity.

22
The secomd part of syvstem desten is terating between code and desien.

o=

o 13, Deseribe the external tools with which your system interfaces (tool
compatibility).

o~ There are copverters Tor moving from the IDEFO semantic database 1o other
o,

Il

™

.:-_
.\

115 ;
3 |
N O Y WL FaL L PR e PR LI i S S R R e) 4 " AL AT L e A N T G T S T AV W U WA SR S S Vet T S
N T e L e S L N T O SN AN AN

o
NSO
) ‘,'n.'
o
L
.l\.h
T~
" v 14. Describe how your system supports hierarchical decomposition and flow
2 direction (topdown, bottoms-up, both, etc.), architectural perspectives (designer
--::-' creativity) and object-oriented design.
::'_-} IDEFO Is designed as a hlerarchical method. As such. there are people using
' ‘ our tool tfrom the top-down. or bottom-up.
~
15. Is your system supported by formal syntax & semantics? Describe
AN briefly.
o
138 See papers on SADT and IDEFO.
-!._ X .
.:'-‘"{ 16. Outline typlcal utilization costs for your system (cost of acquiring, using,
\}. training & maintalning it).
Mah No response was provided for this question.
v
-::- 17. Indicate the hostability (measurc of degree of portability) of your
S
j : system.
LN
>
) \f. . . - P . -
4 Cureently, it requires an MsS/DOsS machine. ['he desizn for the final system
,(; requires any workstatfon and maln-frame conthtnation.
'.::::j 18. Deseribe how your system supports interdisciplinary abstractlons/represen-
'_';'__ tations (l.e., systems engineering, software cnginecring, hardware cengineering).
0N

1

IDEFO has been used 1n software, hardware. [actory automation. personnel

":\ﬁ‘ procedures, and hundreds ol others.

P

.‘-:-’

e 19. llow complete is the methodology - do its prineiples embody

P

.t -A devcelopment methodology only

\:;:--', -A design methodology only

-‘::--f -A programming mecthodology only

L™ . .

SN -A project, control methodology

4" - |

CSON -A management methodology :
-All of the above

It fnelodes desion el development.

PN

v et
A
IR
=
’oL
".-1_"..
b
v
Vot 116
Vo
Lot
®:
i
\f-.
-"~‘
§ W e T e P A" et e T " a am o W Y Wy AL Ay D -
~ AR ARAKN S S NS S S R AT R LSS R A N S
) i AN, NG e Ny o W, L EANS AN
TR VR SR QSN Y <

i

E 20. Describe how your system supports a team development approach.

N (Number of statlons/users).

‘-‘E Lsers work at workstatlons. Dilagrams on placed In o database on a

) malnframe, to be reviewed by others at thelr workstations.

g [t is planned that the completed dlagrams and code of dlfferent organizations
can be checked for consistency, and simulated or combined on the main-

f:. Irame.

.:l.
21. Describe how your system supports design trade-ofTs.

No response was provided for this question.

- 22, Indicate the range of problems to which the system c¢an be applied.

r‘..
No response was provided for this question.

) 23, List the names, addresses, and phonce numbers ol lve (customers) major
users ol your system.

' Nooresponse was provided for this guestion.

v
PR

117

)
]

-

$ o h z ” o * N Y
AT @it SN
y Sy \\.“L.W\\n | . .'A'dvu--'f-i

Associative Design Technology. Ine.
1142 Brigham Hill Road
P.O. Box 518
North Grafton. NA 01536-0518

120

_- o

>

2

2
R

A,

s

AR ANALIIE SN L SRR
DM.:.;.f SHNSNAG R

= Sa-Sa—da

2
C
- -

« .
h- ::..
4!
.
v
s il
N Assoclative Deslgn Technology, Inc.
4 -
()
s * 1. Describe how your system supports early detectlon of Inconsistencies,
SR closure and errors.

The central module of the PadTech Deslgn Core Is an Inference engine called
g N the "process machline.” The process machine applles system- and user-defined

: o rules of logie (inferences and constralnts) to construct a knowledge base that
o contalns the process design. The process machlne Is thereby able to detect

o ;::: inconststencies immediately. [t wil not allow the user to enter logically

he Inconsistent tacts in the knowledge base.

> -:{ By definition. the knowledge base, bullt and malntained by the process

o = machine is assumed to be a closed world. This means that the knowledge
:: base 1s the universe. A fact can only be true If the supporting data is

« f:-: Inctuded in the knowledge base. The process machine detects Immediately
q r any logical assertion or query that would violate this closure principle and

Y. informs the user or expands the Knowledge base as appropriate.

'.;: The process machine has built-in error handling that can Inform the user of
L any errors resulting from attempted logical operations. The error is reported

(ﬁ throngh either the textual or graphics interface to the process machine.

2. What type of progress metric does the system produce? Is it quantifi-
able measure of completleness?

A Tl I}
e PN
'

The PadTech Design Core has not automated the production of quantifiable
mertries.

N
N |

oy

.

= 3. Describe how your system supports documentation, program management

S and control.

. I'he PadTech Desicn Core does not provide pre-packaged automated project

3 manacement tools for docnmentation. program management or access control.

These Teatures, however, ean be treated as universal attributes ol objects in

the system desten, Henee, ke any other object attribute. they ean be
“ provided Tor and even made mandatory when using PadTech (o design o

- ~vetem. Therefore, these features are completely cnstomizable for each

- project.

¢

1] v:"_

‘ oo

“

p - 121

¢

I : .

- R S A CPR e
SO O C "\"& .

e
d

-
N

*

_.

.“_.

Z:;Z

! :

(. 4. Deseribe how your system supports real time design.

fr", W

,-:'.:: The PadTech Desizn Core is Intended to meet the needs of real time deslgn.
'.-:f'. Time in the PadTech Design Core is treated as a sequence of events. The
::j-: operation of PadTech processors can be svnchronized with a real time

\ - sequence of events to any granularity required by the system designer.

i .

t::-_ 5. Describe how your system supports concurrency, parallelism.

:::: The PadTech Deslgn Core supports the creatlon of deslgns with massive

- parallelism. and allows the designer to incorporate as much concurrency as
_, allowed by the problem. [t supports the notion of "processors.” Processors
.::f: are. In essence. executable objects triggered by changes In the state of the
_:::j knowledee bhase, The result of executing a processor Is called an event. An
::-E: event actually marks a state transition and. in general. signifies the cre-

.' ation/termination of an object or a set ol objects and the relations connect-
A ing them. A “process dingram™ 18 used to capture the “trigger rules™ and
',": “processor-produces-event” relationships that together describe a conmplete

-:- o process, The rrigger rules. which determine under what conditlons a

e processor will “fire.” can be quite complex and Introduce concurrency.

o Anvtime the trigeer rule conditions are met (f.e.: anytime that the state of
e The universe of dlscourse is as described In the trigeger rules) then a processor
'\::; will tire. [t the trigeer rule calls for a processor to be flred for every

‘"i: instance of a partleular object (or set of oblects and their relatlonships) then
:::: the processors are made 1o execute concurrently. At that polnt. each

e

processor is auntonomous. Communleation takes place strietly through the
Knowledee base. There is theoretically no limit on the number of concur-

O

) .
.'-' rently fred processors.,
SO

A 6. Is your system constrained to a particular implementation language (Ada)?
-‘-.

.,, The PadTech Desicn Core Is not constrained to create designs for a particu-
r e langnaee, In faets o PadTeelr desien may be used to integrate modules
::—' impletnented I diverse Lingunges,
e
O
S 7. Does you system produce Ada DPDL?

9.

- ¥

N The PdTech Desten Core will have full Ada PDIL production eapabiiity In
"'.-: [2evision 2,00, N prototype A\da PDE produaction eapabtlity will be demon-
“trated with Revision 1000 Desiens produced by PadTech are partieualarly

. well-~uited to support Ada soltware ensineering prineiples,

.,:

-

Y .

» 127

a2 -

®

.

-

""

‘-"

T i T R LA P R AN 3y . S T T o IO W N 1S VA G B P VAN RS
F P J‘(s, v’l./',-." ey OO0 ._,\'.‘\ - -‘._.\\ s \" !.‘_\ g 4....‘. .‘ ~“’“ Tt

~

sl 2 R
ol

8. Describe how your system supports life cycle intraphase & Interphase
communlcations.

Y rNx? Sal ¥y 2 A YT

Oune of the goals of the PadTech Design Core Is to elevate and automate the

role of a process architect and to totally Integrate the design work of the
architect with the !mplementation of the engineer. The result Is that the
traditional boundaries between deslgn and implementation phases of the

software lite-cvele are not distinct. Indeed, the dichotomy between design

and Implementation s largely removed. PadTech Is bullt upon the notlon of

“archiyping.” The early results of the design effort are, in fact, more than
a prototype: 1t 1s actually the basls for bullding the application.

At the same thime, the designer is able to quickly modify the model whenever

new Informatlon requires a change to his/her plans. The result Is an
nnusual rapid prototyplng approach and not a strict waterfall soltware
development life cycle model.

9. Is your systemn automateced, executable, compilable?
\Various aspects of the PadTech Design Core are fully automated. For

cxample. the graphles desien tool automatically generates PADL (Process
Architecture Design Language) which 18 then sent to the process machine to

query/modity the knowledge base. Thils same approach is used to lmplement

3G processors that communicate with and are Integrated by the process

machine. ADT provides libraries for generating PADL In order to automate

this approach. “Processors™ In the ADT vernacular are executable objlects.
ADT does not offer PADL compllation eapabilities at this time.

In terms of transiation tfrom the ADT design language (PADL) to Ada. the
nroduction of Ada (or Ada PDL) s awtomated. ADT does not provide an
Adan language processor,

10. Describe the graphics support for your system.

The PadTech Desicn Core ofters two fally functional user interfaces. one
rextuil- and one graphics-based. The graphies-based module is called

Padsurtace, Padsurface is carrently implemented on a Siicon Graphies color,

hiczh-resolution workstation. The user interacts with the system through a
monse and the Kevhoard, The eraphices interfacee allows the user to create
Loth tvpes and instances. [t supports three syvstem-supplled diagram types
CretIvity dingrams for planning, concept diagrams for data design, and

proces~or dingrams for flow control) as well as user-defined dingram types,

173

A OO .r"f L AT Y '\1- v-..'.)-'\)' NN "-r N A AN U (Al
V'N . ."l PO Y ‘n ‘-'I .!"!o ,:‘ll & A '\' N ~ > .' \‘ YA

%

B TR R
Tl

POt

XX

e

TR TR A R .,

M0

53

N
o e

a8
s X
‘l. l' L 4
R

g
[X'y

LR o)

N IV, ~
AR A

fy 4 &
L ICR

'

- 7 - - J - ~ 5 3 > < > Y TN TV Y T W TS T Y TR T e T Y VW

11. Describe how your system supports concepts of:

-Barly prototyping vs. rapld prototypling
-Software reusabllity
-Information hiding
-Packaging concept
-Abstraction

-Typlng

-Evolutionary development
-Generles

-Macros

-Data flows

-Control flows

Because many of the concepts are related. and some do not have generally
accepted definitions. we have discussed the concepts as a group in the
context off the PadTech methodology. The PadTech Deslgn Core takes a
unique approach to the software design process. This approach makes use of
many coneepts commonly found in object-oriented and logic programming
environments. I[n particular, the notlons of types. Instances of. software
reusability, and abstraction are handled In a very sophisticated and complete
manner. A few definitions of the PadTech concepts are includecd in this
(uestionnaire.

The PadTech Design core consists of a knowledge base. the process machine
and ovarions interface systems including a PADL edltor-interpreter and
Padsuarface (a graphics interface). The knowledge bhase Is divided into the
information base and the rule base. The rule base contains constraint rules,
inference rules and consistency rules. The process machine Is responsible tor
creating and maintalnlng the knowledge base. The process machine recelves
messages from processors (reusable executable software modules). The
messaces may be quertes, reaim modifications or triggering requests,

\ realm provides granuaiarity in the knowledge base. [t 1s a portion of the
world tfrom o partieular point of view. A realm consists ol a state of,
aftalrs: f.e.. obJects that bear relations to one another. Some ol these ohjects
are executable and oare called processors or operators.

Fovervthing oceupying o realm s an object. A type s an oblect that
prostdes over itsoinstances, A tvpe 1s o prototyvpe or template that specilles
Gopattern to o which 1oinstances must conform (inherltance rules are applien-
Bl One objert s o subtype of another i and only it they are distinet

174

- SN S T
-““ & ", »
.»I\ -. # " LS

x‘ . !'!00 A

no

d
,

Vel

and necessarily every lnstance of one 1s an Instance of the other. Objects
may have attributes. An attribute Is a binary relatlon and the value of an
attribute s an object of a type that satisfles the Intension of the binary
relatfon. The relation ltseif has varlous attributes Including cardinaiity.
Hence relatlons can be mandatory or optional, and an upper bound lor the
number of Instantiations of the relatlon can be enforced. An attribute Is
elther a property or a component. An attribute Is a component I a change
in s values for a glven object actually changes the identity of that object.

A partition of a glven type 1s a collectlon of subtypes. constrained to share
no instances.

A proeessor Is an executable object. An event type Is o type that signals
the transition of the knowledge Dbase from one state to another. [ovents are
proditced by processors and, in turn, can trigger other processors.

Aetivities are high-leve]l looks at parts of a process. An activity produices
products, In turn. products are in consumed by activities.

A diagram is a collection of instances of types given in the diagram’s view,
further restricted by the diagram’s space. and iimited to a particular realm.
An activity dlagram contains only activitles., products. and the relations
produces and consumes. A Processor diagram contalns only processors and
events, and the relations produces and triggers. Processors can be dividerd
into action processors that must always produce an event and decision
processors that produce an event only under certain predetined conditions.
Conecept dingrams contaln various user-deflned types. not included in activity
or processor diagrams. Concept diagrams are linked to activity diagrams
through the products.

Processor diagrams are linked to activity dlagrams through the activities,
Activiry dingrams are linked to user-detined subjects. Concepl diagrams
capture datallow information. Process diagrams eapture control rlow informa-
tion.

The PADIL interpreter supports the notlon off PADIL macros that aceept

poratneters and ner oas fuanetions.,

125

- -
P

hi

)

5

+

ENENEN

< @®!

-
s

PR
e '.'-. 'u’ ".

v
Ll B
[T T]

o
»

¥
x

(3
13

£
At

@

[XN A

]

22 @

LELELYG

<
':’)s)(.J @0 .»J'i.

T .
AN
Il L)

-

T
in

12. Is there a paradigm embedded In your system? [If so, describe it
briefly.

The paradigm underlying the PadTech Design Core Is largely compatible with
the work of the SO committee for Conceptual Schema (Ref: "Concepts and
Terminologyv for the Conceptual Schema and the Information Base™. Interna-
tlonal Organlzation for Standardization (ISO), [SO/TC97/3C5/WG3. March
1982, coples available from Secretariat: ANSI (USA). publicatlon number
[SO/TC97/3CH - N 695).

This paradigm combines elements of an oblect-oriented approach with logic
programming environments, The result Is a proprietary paradigm which
supports not only “conceptual analysis™ but also provides an integration

platform to control the execution of “conceptual processors.”

The actual basic model underlyving the product is customizable. IHence the
nser can elect to hide the PadTech paradigm by placing some other method-
ology as a shell over the packaged basic model. Hence the product can be
made to support a varlety ol standard methodologies.

13. Describe the cxternal tools with which your system interfaces (tool
compatibility).

The PadTech Desien Core includes a runtime library designed to allow
external tools to communicate with the process machine. Any tool eapable
ol manipulating string parameters (character data tyvpe) can make use ol the
PADL statement Bullder library.

This <et of routines will generate PADL statements and send them to the
process machine. It also facifltates PadTech knowledge base queries.

11. Describe how your system supports hicrarchical decomposition and flow
direction (topdown, bottoms-up, both, cte.), architcctural perspectives {designer
creativity) and object-oricnted design.

The PadTech Desien Core supports the analysis ol systems in o manner
<tmnilar (o that used nomost object-oriented and logle programming environ-
ments, In oceneral. the emphasis Is on conceptual analysis: e n logienl
decomposition of the problem nto o set of oblects and relatlons bhetween
objeets, PadPech takes the design methodology mueh further than most
object-criented o logie prooramming tools amd even inchudes oo method for
very hich-level planning,

126
NPT AT .‘;.r"a"“’\.rf"’ B o e SV W T PR o e P i R A,
o\ M o U U A U UM CH R MR N Ty P UMD e Mo i b Mo Pl M ot iy . N o o AN))0 M

mwrm»w'j’w'rvvvv‘vvvvvvwmmqw:mm- '*T

-,
el

3>

boane 4

ﬂ‘
s

S
s

15. Is your system supported by forinal syntax & semantles? Describe
briefly.

d]

The PadTech Design Core deflnes a process architecture design language
. known as PADL. The syntax ftor this language is formally defined by the
-~ BNF-ltke input for the Unix tools LEX and YACC. (YACC accepts speclifica-
tions which detine a LALR(1) grammar with disambiguating rules. The
semantics for PADL have been defined in predicate calculus. The actlons of
thie process machine (inference englne) can also be defined in predicate

o ~

caleulus.,

.
e
A
16. Outline typical utilization costs for your system (cost of acquiring, using,
training, & maintaining it).
N
The beta revision of the product requires a Sllcon Graphies 3010 terminal
o~ aud o Data General DS/7500 workstation. The total cost of the Silicon
r Graphies hw/sw 1s approximately $-46.110. The total cost of the Data

General hw/sw lIs approximately $31.320. The initial cost of ADT's soltware
produet, the PadTech Deslen Core. s $:35.000. MNonthly support cost tor the
Desien Core s $350.

17. Indicate the hostabllity (measure of degree of portabllity) of your
systein. :

PR

ADT intends to port the PadTech Design Core product to a number of
svstems i 1987, The produet s written in Common Lisp and C 1o
facilitate porting activities. At this thine. the product Is avallable only In the
Silicon Graphles - Data General configuration described above.

“»

|

18. Describe how your system supports interdisciplinary abstractions/represen-

ES:- tatlons (l.c., systems cngincering, software cngincering, hardware congincering).
“ The PadTeeh Desien Core Is intended to be interdiseiplinary. [t promotes
-::f the notion off o process architect. PadTech processes can be hplemented in

computer software and hardware, physieal svstems. or people. The syvmbaols
N and rerminology chosen to represent the process desien are customizable by
“:-:‘ the process architect, Theretore, the” tool can be nsed by a variety of

experts encinecerine or otherwise),

177

B U AT IS AT AT AT
MY B AN

o

T e e e e e e T e
L NN S

Aas "F‘Jx_zt.r; o

*
v
0
'
[
'

..

v

L

-

L~ .

..:-.

N

e

"' 19. How complete is the methodology - do its principles embody
:.\:

v -A development methodology only

-A design methodology only
-A programming methodology only

e

LA PR

';' -A project control methodology

4 -A management methodology

s -All of the above

L

$'~ The PadTech Deslgn Core embodies a planning. design. development and. to
ke ~onme extent, o programming methodology (although the emphasis is at a
o syvstem level and is not necessarlly applicable on the traditional algorithmic
::: level of 3GL structured programming). '

.:;Z

./-:.: The PadTech Design Core does not enforce or assuime a particular project
" control or management methodology.

-f"\.'

.::'_-j 20. Deseribe how your system supports a team development approach.

AN (Number of statlons/users).

e The PadTech Design Core Revision .00 has been implemented on a single ’
‘_ nser workstation {one station per user). Full multi-user {team) access to a
:}:: ~single design knowledsze base will be available in Revision 2.00 expected to 2¢o
“::: to Beta test in June of 1987.
["

ey

L 21. Deseribe how your system supports design trade-olTs.

b.

A

The PadTech Desicn Core provides o svstem architect with a very powertul

x
4
Y
H

L
i
-
1

~ct ol tools to facilitate the production ol dynamic. lexible process designs.
The architect is, therefore, able to modilv deslgns or try new approaches
very easily,

_,L
@ 2E
NN
o

g

2. Indicate the range of problems to which the system can be applied.

The PadTech Desten Core is applicable to a wide range off problems. [t s

LR j

Lestonsed Tor very Iarge. complex systems with o high degree ol conceurrency

.‘(‘,v.}'A.v'v#

required. ANy process, computer-hased or otherwise, ean he analyvzed or
Aesjoned sine the PadTeceh Deslen Core.,

R
:';':';":5‘1

;{:‘

TR

SN

LY

128

x

PR A AR

AN X
\'\)\J - =

&
&

23. List the names, addresses, and phone numbers of five (customers) major
users of your system.

As of January 1. 1987, only an Alpha verslon of the Deslgn Core has been
released. The Beta version of the product Is expected to be released by
February 1. 1987. and Revision 1.00 1s expected to ship by April 1. ADT
has 1wo Alpha customers listed below:

l. Data General Corporation
ATTN: Peter Doonan
HOO Compnater Drive
Westbhorough., NI\ 01580
Phone (617) 8TO-63-IR

-

2. Coopers O Lybrand Assoctates Liud
ATTN: Ilans Deiter scholz
Plumtrec Court

LLondon ECH4A BT

Phone 01-383-5000

Note: Ju s the ntentlon of Data General to both use the product internally
te help meet the needs ol thelr corporate MIS group and to market the
product In both the commercial and fecleral marketplaces.

Coopers & Lybrand UL, has successtully used the product 1n their role as
consutitants to the British Royal Navy., They Intend to use the product In
varions other consulting projects both within Great Britaln and the rest of
Fonrope.

Joth DGoand CXL ean provide fuarther Information concerning their use (or
their clients" use) o the produet.

s 'y

ot 1

PR

1
ﬁ.l (1 ,' ‘14

€L el ettt

\-...

[A

[S SER

.
“

129

s

“u
S €

)‘}

<

¥4 \‘z_'.r Co

3

K

l
5
§~
“l
2

,

AT - AT AN ot |
F. 0% ® P et My S A

.l
P

»

X

130

‘.r,;-',{-r,'

AR APl
RIS AN,

\.,-n.’ " -
SRS U

FA
0

3

.
-

o s
It I N AP

-
@

AN

o %

» " <
! fxf\-.. A

R I R AR X P " .
DA ... -\ K] .A &-n\h-\.n :\.--.\-hn ® .if\ AR .cl,.'%‘.\f-v\‘v.-f.‘l\l ® 5 u-&-q.

»

S d e

.
PP

W ~

LT,

P

.
'Y
R

s "
>

eele 2

* “?(J

AD CAD. Inc.
Unlversity Place. Sulte 200
1244 Nt. Auburn Street
Cambridge. MA 02138

131

\\\\..\\
.\\-!.\- -...~ ‘e

a\ .

s-

.(I

LA Y

\\-

e
\.\.

.

o
W%

M P "-I"‘\l‘,"-\""-l‘

N

,\"‘-" ".f:'-r',:f

A

ALY

AL B AN
T

e
P Sy et Ny

':-:'\-I'-.

»
“u

L

)

L-

AL
,

AD CAD, Inc.

'

.
e

« e a i

1. Describe how your system supports early detectlon of inconsistencles,
closure and errors.

By lts very nature, the descriptions and speclficatlons In STATEINMENTs

visual lancuase are preclse, vet eclear and comprehenslve, and thus allow for
Eh relatively easy mannal detection of design errors and lnconsistencles from the
. earllest stages.
- The eseriptions are completely understood” by STATEMENTI. thus allowing
. . tor automatic testing and simulatlons of the system under description
:'.:: - (henceforth. the SUD) right from the start. Consequently. even it the
YOl descriptlon at a glven polnt In time Is very high-level and lacking most
_-. low-level details. 1t can be simulated and tested for consistency, completeness
'_l‘ ,: and many additional nontrivial propertles at the level of detall that happens
?-_— 1o be avallable.
N
A 2. What typc of progress metrie does the system produce? s it quantili-
f able measure of completeness?
\‘;
ﬂ STATEMENTL does not provide any explielt progress metric. We do not
really believe that the distance from an ultlmate final specification can be
. measured by natve numerieal means. One can label entities In NTATE-
NMENTT as not ol specitled vet” and count how many such remain. and
stimilarty one ean connt the levels of detall already present in the deseription
[_ and try to estimate how muceh deeper the tinal deseription will o, Obvious-
‘\ V. however, ~ueh metries eannot be overly slgnificant.
. ':'.-' 3. Desceribe how your system supports documentation, program management
].."- . and control.
. -~
~::'- '_’::- STATENENTE provides extensive documentation facilitles, Ineluding severn|
j:.-\- ’ Kinds of craphdenl carpurs, fixed format documents (such as data dictionaries,
;.::: - titertee dociments, N-square eharts, etel) and. in the near fature. also
_-:: i~:: UaepespecilTed docnments that will be able to adhere to the many standards
o it Neld The matn point 1o note s that STATENENTLE contatins andd
.:,' - hederstaneds o vast oamonnt of intrieate Information about the structure,
:'.: T'.'_i Fonetionadtov, cnta-tiow . andd, notabive dynamibe behavior of the <UD v ean
:.'j e ety cnhects oF Thint intormation elther explieithy usine o poweriing
::; . Grrery incinee o B lieit iy nsine docient generntion,
>
~ L.
v
.::) 133
* .
..:
4.

P TP S YT U O
» J_'-"_‘-"__-'\-FF\-P\-' ('__*,'I-‘-’,.J'\w"

",

AL AT AN A A A I A S Lok Sl el Sad lad ol Bal Sud fad {ah Yok SalAal. sal Sl Sl taldSal ARt Al AlarA e Ade Sie Ale Ata hie Ate SATa Sha & 4 A & A R Sk A Sl Sl L

STATEMENTD will support conventional project management facliitles,
including version control and limlted user access when working In a multiple-
user environment.

ND

B

CGRN 4. Describe how your system supports rcal time design.

S

\:,-.

:«‘:: STATENENT!L was deslgned with complex. computer-embedded real-time
-

systems In mind. It is dificult to ddescribe the entire approach In a few

J

o words. but it might suffice to say that STATEMENTI1 utllizes a novel

:::*:: formallsm. statecharts. for the behavioral deseription of such systems.

:7{::: statecharts are described in:

b

e D. Harel. "Statecharts: A visual Formalism for Complex Systems.” Sclence ol
e Computer Programming & (t987). to appear.

N

N Time (and real-time In particular) is captured in statecharts by special

o timeout events that are used to 1hmit the time of being in a state. waiting
5 for an event. executing an activity. ete. Sinee essentially all entitles in

?—. STATENENT! are multi-level and hierarchical. including (among other things)
'__‘;{ states, events and activities, the expressive power of these timing specifica-
’-\.‘:-Z‘ tions is very rich. [t goes without sayving that the simulation and testing
::',.‘_-‘ capabilitles take the timing constraints fully into account.

0

=

5. Describe how your syst.al supports concurrency, parallelism.

Again., dealing with the concurrency and parallelism Inherent In complex

svstems s amone the main concerns behind the STATEMENT1 svstem. In
fact, one of the main features of statecharts is the extension of fInite state
machines and thelr diagrams to cater for concurrent state-components, on all
levels, via the orthogonallty construct, This removes a major obstacle from

¥l ©

)

[}
.

]

the nse of the very natural state-based tormalisms for really complex systems
- the state-space explosion phenomenon.

v

LAt
A
A

L4

6. Is your system constrained to a particular tmplementation language (Ada)?

- -
Sl
I v","'

No. STATENENTLD can be compiled, in principle. into any high-level

-
aa
3

AN

procramming angunee, and for that matter also tnto microcode or silicon.

2’

2

Its database holds all Information in o shimple internal format saltable for
manpulation i oany sueh anguage,

Wkt

e e T

A

x
<

el
)

IS WAL)
oele AN

]
)“J“J‘.‘l' ~

134 ‘

L A
Wam 3

YRRAR]
3y
[N RN

e AT

e
s
4"'-'
AN
A
27

o Wt L n
o J-'J:rN'"r

"an. >an a1 eliatBae ‘e Ala Rug i Ny e g a3 ta mee Bie @ . m] - b e had Sav JLR" ld LA AR o TN - ‘T

\:;

o
e
I
Y ‘e

1}

L.

o
S
.-. .\.

d l.;. »

» 2l
N

7. Does you system produce Ada PDL?

N e g
- U

-
:::: Not vet. although the productlon of Ada PDL should be possible In a few
-:::- j'j- months. The difficulty Is in the rich expresslve power of the languages of
"«' ’ STATENENT!1 relatlve to Ada PDL. A subset of the STATEMENTI1

\ languages that matches the capabllitles of Ada PDL more closely could be
) M ' treated for Ada PDL production quite palnlessiy in a very short time.
o
i’, " 8. Deseribe how your system supports life cycle intraphase & Interphasc
| “, f}: communications.
o ¥ It does =0 by being based on languages that are. on one hand. clear and
:‘_:- L} easy enotigh to serve as the llngua franca of the prellminary specitication
.j:" phases of the life cyele, even those parts carried out by the cllent or
-\..J c.: potential user. and. on the other hand. precise and rigorous enough to be
.‘ 2 tully simulated and tested as a prototype of the tinal Implemented system.
& Deseriptions of the SUD on varving levels can thus be communicated between
::':.: :}: sroups and across phase boundartes. since they are ail carried out In the
x::: e ~anme three ceraphical fanguages. and are supported by the very same system.
S
‘ ‘6 9. ° Is your system automated, executable, compllable?

N , .

~ Yex, ves and no. STATEMENTI is fully automated as explalned above. It
NP :::: i~ executable in the sense that lts descriptions can be ‘run’” in precise

:-}': - simttarions of the desired SUD's behavior. including Indications of the

>

Mnetions and activities belng carried out. the data and control signals
flowing, the components and subsystems active. and the changes that take

N

::_. place in modes, states and conditions. It s, as ol now. not directly compil- |
::x' o able inro code. thongh work on compilation Into Ada Is underway. |
2. 1:::: |
» 10. Describe the graphics support for your systern.
~
-::: -jj' Here, too, the topie bees for an extensive response. which is beyond the
-i_':f ~eope of these notes, Actually, to say that STATENENTE "has graphie
:-:: o ~tUpportT ison eross appderstatement. - 1t s oreally oo graphieal system par
e cceelbarere, The nnderiving philosophy of STATENENTIL ik not that formal
.1 de~eriptions ~houbd be supplemented by eraphies, buat that they should be
‘: :\: cntirely craphdeal. STATENENTL allows Tor the speeification of the SUD
-f:: ’ froan three complementary and interrelated polnts of view, trgetural,
:-: Fanetionnl and behavioral, and each is deseribed asing o novel disgrammatic
:;‘ > Finennee (respectively, modile-chnris, activity-charts and statecharis), The
Q; onpensiees hve =everal cotntnon feataresc inceludine hierarehy depicted by
:;::: _
R
,: 135
. -
e
S

4

i
r
4
h

Al B AR Seb - Al

PN,
o
Rl o a4

>
.'

b

o
l, ¥
5/‘ /.. .

encapsufation. modularity, multl-level connections, etec. The graphlc editors
support the usual Kind of Insert., delete, zoom, pan, scroll. move and copy
Instructions. In a menu-driven way. with the system translating all graphlcal
information into Internal representations In its database.

}');
(NN
4

,“1,'

*
-
-

N
ENAY
»‘Q}: 11. Describe how your system supports concepts of:
o
‘Y'“: -Early prototyping vs. rapld prototyping
'-,) -Software reusability
:: 3 -Information hiding
?f -Packaging concept
o -Abstraction
L 2 -Typing
-Evolutionary dcvelopient
-Generics
-Macros

-Data flows
-Control flows

(I a wayv., STATEMENTI can be clalmed to support most of these concepts.
though not always explicitly. STATEMENT1 definitely provides both early
and rapid prototyping. by the formal. precise and fully detalled simulations.
. as explained earlier. Reusabllity and macros are supported insofar as the
desceriptions are highly modular. and thus can be “plugged Into’ many
dilferent places. and reused In other contexts. This applies to states

L4

P

“'_ ("behavioral macros’) activitles (‘functional macros’) and even components anl
-‘- . . . (

;:.:, modules ("physical macros'). Information hiding, packaging (indirectly) and
.p'_-

P

abstraction are supported by virtue of the ‘deep’ hlerarchical nature of ail
STATEMENTD descripttons. For example, activities Impose strict scoping
rules. not unlike those found. (e.g.. in Pascal or Ada). so that internal
events. conditions. signals and data are hidden from higher levels and exterior
entities. Data and control flow are basic to. respectlvely. activity charts and

B

.\

PR d
AR

ol
,;r.?'.

~
Y

statecharts, and show up very clearly 1n the g¢raphies. as well as in the
simulations and the reports and documents,

b

)
.

D
Savve @

& 1

12, Is there a paradigm cmbedded in your system? I so, desceribe 1t
briclly.

[d
LS

»

hd
L
Sl

Nowonche ol the asual (overkilled) ones. We belleve in clear. precise and

. el
ALY -

~trunlarable deseriptions of all aspects of the <UD, with o firm commitment

]
-

roowhnt one might eall “visual formalisms™ ew formal dingrammmatic languages,

[N LA R
a4 €

A ‘/fr'f-‘

ror,

+
‘v"r‘- 4

136

PN S

»
i

Py

Ay
<

v

;:’S’_

apt
<+
]
",
42
g
. e
Py

<

W e 3 = - 3 T hNUENTWEWIEIWEWTETI TRETETARFARET RS TEINMART AR T NSV 77T V7TS 1T ITTY M Urv s UsIvT i EER Y R YR .

-
: _-\
Y N
OIS
{

NN ’

-\.:‘:x o

NN

S
K --;
{ t 13. Describe the external tools with which your system Interfaces (tool

. compatibility).

=

Y LS

:.:j f:» STATENENT!L does not interface with other tools.
ook

'1.'\-

\ (- 14. Describe how your system supports hlerarchical decomposition and flow
S direction (topdown, bottoms-up, both, etc.), architectural perspectives (designer

-
AS -~
:.\f creativity) and obJect-orlented deslgn.
%
SCI
N . . .
o As discussed above, hierarchical descriptlons form one of the cornerstones ol
! s i bl Al r -
STATEMNENTI!L. They e¢an be utllized in top-down, bottom-up. Inside-out. or
L. mixed rashions. The user of STATEMENTI1 1s supposed to be a highly
& . p
:‘_.-: tralned professional. and since STATEMENT1 does not lmpose any rigid
N reclpes or templates tor making progress, the designer's creativity Is as
.'.I“ N
:v-' N Important as anvthing cise. Object orlented deslgn. though not a central
! W -
. > concern in the conception of STATEMENTI1, s possible using separate
S activitles for separate oblects. and specifying their Interrelationships via the
'S controlling statecharts.
-."_: e
':‘_-:_j 15. [Is your system supported by formal syntax & semantics? Describe
B briefly.
) Delinitely. Each of the three graphleal languages has a precise graphical
’ e (and hence also textural) syntax. and a formal mathematlical operational
’-:.; - semanties. Activity charts, for example. specify 'possible’ data-flow. an
7‘ . nnusual concept which atlows thelr statechart to control the actual dynamic
—~ (, data-flow. Starecharts have uite a novel semantics. that is described in
SO detail in:
\:;
N ::-: D. Harelo Ao Pnuelic J.P. Schimidt and R. Sherman. "On the Formal Seman-
SN ries of statechart=.” submitted for publication.
®
'O ?',
.-";_. 16. Outline typical utilizatlon costs for your system (cost of acquiring, using,
Ao tralning, & maintaining it).
.-;: oo
A U The basic software packace costs around $13KK per graphleal workstation. with
! various add-ons (e, testing amd o simulation modules, project management
_.::: -~ rontines. ote) costing between $2I and $10K each. The price neindes
- l‘- . .
SIS rratnine ond maintenance,
w
e
SO
e
a
ot .
\a L
.r:: o
- 137
@
S
NJ_:

X
5
S
)
i

N
~4

'l

4
‘

- o

e

-
Ly

Hh Y

lli-l
PR AR

s
.

. o

e e
%
¢

NP AT SN 4

Nt
[4

[R

-
s

o
LA
LG,

1@

-

P
LAy

X

1

e e

fﬁ _"

ox

‘l‘l.
PN

’

e N
s P

)

2,
LR

R R A

RIS

AT |
L

e
r

7 ®.

17. Indicate the hostability (measure of degree of portabllity) of your
system.

STATEMENT1! Is wrlitten malnly In Pascal, and currently runs on a Vvax or
Micro-Vax with a VMS operating svstem and a color Tektronix graphlcal
terminal. Versions running on Vax-Station, Sun, Apollo and IBMN workstations
are forthcoming. A standard plotter and an additlonal alphanumeric terminal
are recommended.

18. Describe how your system supports interdisciplinary abstractions/rcpresen-
tations (l.e., systems engineering, software englneering, hardware engincering).

STATEMENTL utilizes clear graphical languages for precise specitication and
analysis, These languages transcend the differences between the various
relevant engineering disciplines. a tact that has been thoroughly proved in
three years ol work with the languages by a large and heterogeneous tea
of engineers In the Lavi avionics project at the Israel Alireraft Industries.
Thus, STATENENT! has been demonstrated to bridge the gaps and span
the differences in approach. mentality and communlcation media of soltware..
hardware and systems engineers.

19. How complete is the methodology - do Its principles embody

-A development methodology only
-A design methodology only

-A programming mecthodology only
-A project control mcthodology
-A management methodology

-All of the above

STATEMENTL provides a novel and complete speclfication and design
methodology. [t does not touch upon the programming problem per se,
except insorar as STATENMENT!D deseriptions can tead (via direct downward
compilation) to {inal working code.

20. Desceribe how your system supports a team development approach.
(Number ol stations/users).

STATENENTLL s =snited ddeally for o number ol workstatlons {sayv. between 2

and 250 Nnked vino oo network., with or withont a mainframe in the hack-
cronnd. s project manneement facilities will he tatlorable towards sueh
Penn «ffores,

A L A AT . oA -
vy A \\\.J."

A WL o, &,
R SRS T

" ‘-\"- xfn’ PR
- 'na K'{- "

] > 3 ™

. - - L - - ~ < i - T O N T LW TR TN TN TN TR T TR TR T U TR O T O

LA
f_'_,
My
e r
W
OO g
rooo-n 21. Describe how your system supports design trade-offs.
N
“ Slnce the descriptions resulting from worklng with STATEMENT1 are on a
N level higher than conventional software, hardware. microcode. ete.. STATE-
MENT1D transcends this divislon too. Its descriptions cat. in princlple, be
N
~S complled Into software in a high-level language. into mlcrocode or other
- low-level tformallsms, and even directly into sllicon. For ideas on the latter
[see:
- D. Drusinsky and D. Harel. "Statecharts as an Abstract Nodel tor Digital
i Control Unlts.” CsS86-12. The Welzmann Inst. of Science. Rehovot. Israel.
e Submitted for publlcatlon.
- 22. Indicate the range ol problems to which the system can be applied.
) STATEMENTL! can be used for the specification. analysis and design ol any
A complex reactlve system. Reactive systems appear 1 o wide spectrum ol
-}_l application areas. Thelr complexity stems [rom many diverse discrete events
and conditions that control thelr behavior. [Examples Inchucde aviontes and
5 weapons systems. VLSIL communlication networks and protocols. process and
o control systems. and so on.
o 23. List the names, addresses, and phone numbers of five (customers) major
ﬂ users of your system.
= Dr. Yonah Lavi
Nannger RED Computer Systems
Israel Alreraft [ndustries.
LS Lod, Israel
" Tel: 972-3-0713716
o Nichenl Zeevi
o Div. Head for software & Llectronie Warfare
- FATA Tsrael Electronies Industries LLtd.
r:'_. Folecrronies Division
Ao, Tsraed
= Tl 9T a0-007T 3N
N
A
@. Joecd Patlis
-
- - Nethoda]oeies
::.. ~_‘:.. Fl-Op Electro-Opties Industries [,
n‘ !
g ~cienee Bosed Park
:: A INiryvar \Weizmann., Rehovot, Israel
o Tel 072-5- INGTOL.
NS
‘_‘n. ’.~
-~
. 132
o
N
X 4
7
e -
" .'v'\ .. "o -- - o

o~ . AR RN CREN
A A -s.‘{h.f\ 'C\ e .'s.‘\'.\ .u'(a.{xuxm '::\SA.('A.:' 2 \Aﬁ&ﬁ.}

v,

g

A il

()

s 'l‘."{‘,{-/‘ e '{.;-F,&J .’5-"’ &f.’-'.?’.r.; "

S
g
4
ot
.f J
—f-i 3
= ee
b
— A
S
L
14
2"
T
Yr
3
P’ 4
S
. -
L
[8
.
SRR _ SSHTRE s\ JOAY __ ACERRIG S 7 2 X A O L A AR J LN

- S = Ve - - Ll

Research Triangle Institute

P.O. Box 12194

Research Trinagle Park. NC

27709

141

il

ol
Fah,

\J*
ATy

. s
2
¥arN,

-

Y

~
A

LIS B)
(.....\.. s
.«.\ .~.v.

et PP
N N A AR AL AL

.x_,..\.\\.,...f...‘]

a cH

PN
s

g

.- --- ..'.!.-|!bil~l

\J..f-\a..-\
LI -

' -

5O

A

Y]

RRE5 18

142

o OO I S R TR O L | la-.-q.‘

LRI L v et e

b S ._....x..\

AAAL

[A A
AP RIS

,_
l’i'(“"
i N

e
s
L

.
DR R Y

» R
v [)
LI T R
A P MY

|
i

» -
P A AR
}i.". R R

i)

SN
PAP RS R

@ SaNNND

)
a
L'}

,’VI[".;

«x
« ‘0 Tx

N

f]

Research Triangle Institute

1. Describe how your system supports early detectlon of inconsistencles,
closure and errors.

ADAS supports consistency checking at several levels. The first basle
consistency cliecks take place durlng the system deslgn and definition capture
phase. using the ADAS Interactive graphics editor. On both single-level and
multl-level systems. ADAS checks for flow and type consistency between
functions and between levels. More detailed consistency checking is done
using the ADAS consistency checking tool. which also checks functional
consistency against the reusable templates from which the functions are
modeled.

Due to the versatility of ADAS In defining systems at any hierarchical level
and to any destred level of detall. it is possible to do top-down system
desien and shmulation at each level aad at any phase of the design. In
doing so. the designer can determine the degree of system completeness based

~n the system requirements and speclifications.

ADAS catches system conceptual deslgn errors In the early stages of develop-
ment through the use of consistency checking and Petrl Net simulation.
Other errors are detected through hierarchical analysis and simulation as the
system Is defined in Increasing detall. Depending upon the degree of detall
to which the system is dellned. loglc., processing., and coding errors can be
detected via the ADAS modeling and simulation process.

2. What type of progress metric does the system produce? Is it quantifi-
able mecasure of completeness?

AU the present time. ADAS provides progress tracking and reporting through
performance simulation. The designer has the flexibility to determine the
degree of detall amd completeness at whlch he desires to model and analy ze.
Plans are nearing completion for a system requirements/specitications.
documentation, and progress tracking system that will be o part ol the
ADAS system.

143

3. Describe how your system supports documentation, program management
and control.

RTI uses the present ADAS system to develop documentation and manage
programs. However, at the present time, no specific documentation or
program management tools are part of ADAS. As described above. a system
1s belng implemented that will allow changes made to documentation or the
svstem design to be reflected into the other,

4. Describe how your system supports real time design.

ADAS supports a design methodology which promotes the co-design of
software and hardware. To represent real-time analvsls and simulation of the
defined system. ADAS allows software functions to be assiecned to hardware
modules, thus representing real-time hardware constraints and real-time
software contention for shared hardware.

> 5. Describe how your system supports concurrency, parallelism.

"y

Ly The ADAS methodology promntes the co-design of software and hardware.
[[n defining the two separate svstems. It Is possible to define concurrent
\'.

and/or paraltel functions. The ADASN tool set operates on whatever system

- o Sy o

~ has been defined and captured so as many concurrent and paratlel processes
S, . . . - . .

o and functions as needed can he detined. analvzed. and simulated.

’l

~

e 6. Is your system constrained to a particular implementation language (Ada)?

©F

ADAS cufrently supports as programming languages Ada and C. and supports

-::_‘: as hardware desceription languages Helix and ISP, RTI Is under contract to
P the Navy VHSIC Program to add support of the VHDL hardware deseription
S
. [anzinage,

N

y The <ource lancguage ol ADAS is C with the Ada Interface written n Adn.
:1:_
o 7. Does you system produce Ada PPDI?

Ty

ADAS allows for the designer to code functionadlty in Ada Tor individual
~oftware modiles. An ADAS program then generates Ada code 1o control
the operation and Interconnection of the Tndividoal modiles.

AT
S
!Illl,'

r"lltll.\.

re2s

g
SAAAL

}-

:‘d.'-

LS

144

-

VA
\"\

'\-;_

-‘ J'.-‘ ‘l 'll Ll -l ‘n - "‘hl -‘-
o A A N A
- h Al -

TE TN o e » 52 BN
RN, \.".\1'__.»\

’
<
5 a

..\- vy \-‘\: <-\.'~ -, ’.'~\\. .’-\N_.

RIS

!
[)
i) %
b 2
ot
v\-
: 8. Describe how your systemn supports life cycle intraphase & Interphase
(‘ g comimunlications.
3 ADAS 1s designed to be used from the very beginning of the design process.
A At any point In the design phase, designs can be saved and modlfications to
a the svstem can be studled. Once the system Is In other phases of the life
\ cvele, proposed modifications can be reflected in the ADAS model before
) . actual changes are Implemented In the systen.
VIR
..
s 9. Is your system automated, executable, compllable?
N . . - .
Yes, all of the above. ADAS tools are automated to the point where a user
P~ ean easthy eapture destgns and analyvze svstems. ADAS s also executable., so
. 5 N
: o that o user can do complex simulatlon and performance analysis with very

; lictle interventlon. \When a system design Is deflned to a level of detall
wlhere each tunction can be described by a block of code. these functions can
be represented by the code which Is compiled and hbecomes part of the
svstemnn delinition.

et
o

..
:‘_ :.-_' 10. Describe the graphies support for your system.
= The majority o the ADAS design interface s graphical. The graphics editor
ﬁ I« nsed to capture and edit the system design. sSystems. -functlons. and
. Interconnects can be deflned graphicallv. A graphles terminal and a mouse
. j}’_ are required for even basle system design. ADAS simulation tools have an
: optional graphical output. thus providing a visual analysis of the data and
control low during simufation of the systen.
|
N ADAS mins on a wide range of graphics devices from workstations such as
[. the Vaxstation . Miero Vax I{GPXN). and Sun 3/160 to low cost color
'::. craphies terminals on multi-user UNIN and VNS computers, such as the Vax
b <600
‘ —
: :E:j 11. Deseribe how your system supports concepts of:
;. -lsarly prototyping vs. rapid prototyping
. c -Software reusability
f -Information hiding
N s -Packaging concept
v -Abstraction
" -Typing
; > -Iivolutionary development
(I -Gieneries
y
' :R
TR

115

. !
: 4
1
]

BN e e 7o T N T e e e L e e T e
B e g o s

WL R e K e e
RO QARG

-Macros
-Data flows
-Control flows

ADAN supports prototyplng by allowing a designer to model a system by
entering performance information as opposed to a complete structured
description. Feastbillty studles can be done, modeling several alternative
architectures and/or algorithms, before a candldate system Is selected for
funetional modeling. Thus, with the ADAS system both early prototyvping
and rapld prototyvping can be done.

ADAN allows software blocks describing functions to be reused where the
same or stmilar funetlon occurs for functional simulation.

Using ADAS hilerarchical modeling. 1t 1s quite easy to hide information in
lower {evels of a design.

ADAN supports the Ada packages.

Levels ol abstraction can be modeled easily using the ADAS hierarchical
=trietre,

As part of the syvstem design. functions and interconnects can be tvped.
Tyvpe matching of model functions and Interconnects 1s part of the conslsten-

vV checking that Is done.

ADAN allows design from the very highest system level down to the most
detatled level of the system. Changes at any level in the system hierarchy
are reflected rhroughout the entire svstem design. Deslgns at any polnt can
be capunred and saved for later comparison.

A ADAR-delTned systems are created using a basic set of reusable templates,
thus providing o continnity based on the standardized templates. New
teanplates enan be ereated and added as the designer requires. The use ol a
~pecilie <set o templates provides standardization across the systen design,

User-written acros are supported inomany ol the ADAN tools.
Daota anel/or control Tlows are represented by interconnects between functions

o hardware modatese Charaeteristies such as quenes ean also be associated

swithe the Tlhows,

L e

hANY:

146

%
Lot 'y

c @

»
.
o

L, 4
P]
.

£,

.
B

G

»

.

Xy .“'--
L APy LR AR AN

»
Ll

. A,:y/‘(. _~'. g

ATALN
RO

.
»

.

l.'

I
x

P._t"(‘_}'

x'.kn.u‘

4

vl A

3

.

L

g

e
o
oy e

A

PAES NN

3 7 v
.20\ @

]

LAY

£

Y% NN\

'l.l
r] l.‘..‘

K P¥

»®.

-

LY
n.:-)").l." Lt

atale

A

r

v ; il
F

12. Is there a paradigm embedded In your system? If so, describe it
briefly.

ADAS iIs based on a structured, hlerarchical system deslgn methodology and
supports this methodology through the use of an Integrated set of software
tools. A major feature of the methodology 1s the co-deslgn of software and
hardware and the Integratlon of both Into a resultant system.

13. Describe the external tools with which your system interfaces (tool
compatibliity).

Helix and IsPs: ADAS provides an Interface to both of these hardware
deseription languages, allowing hardware module descriptions to be written in
one ol these Ianguages and used In functlonal modeling.

VHDL: Vin o Navy VHSC Program contract., ADAS will soon be able to
cenerate VHSIC Hardware Description Language through hardware tunctional
simulation uslng a hardware description language.

~ilicon Compilers” GENESIL: Two-way information exchange of hardware
deseription information allows generation of integrated circult mask data and
mnetional simulation of the resulting chip. Information area. power consump-
tion. ete. are reported back to the system designer.

14. Deseribe how your system supports hierarchical decomposition and flow
direction (topdown, bottoms-up, both, etc.), architectural perspectives (designer
creativity) and object-oriented design.

The ADAS desten eapture and editing tools provide an easy method of
defining o hierarehleal system model. Once a top-level model has been
defined, each unetion within that level can be deflned In more detall by
creating o new eraphical model representing that specitic tunction. This
process can be done contlnuously at each level untll the destred level of
Jderail hos been attained. When simulating or analyvzing the system. the
definition of the hierarchical models can be reflected all the way back up to
the top-most odel, thus attalning A more reallstle svstem view by using the
performanee information passed np from the lower models,

There are no restrictions on the type or <styvie of deslgns that ean be delined
by the destuner in elther software or hardware, Destens can enstly be
cxehnneed for o others 1o allow comparison ol ditferent acchitectures or

aleorithines.,

147

b p e e
RN ot

N . * "-J'w,”*."

15. Is your system supported by formal syntax & semantics? Describe
briefly.

ADAS uses a graphleal representation rather than a language-based represei-
tation.

16. OQutline typlcal utllizatlon costs for your system (cost of acquiring, using,
tralning, & malntaining 1t). ‘

Cost on a Vax 11/750 - 11/780 class machlne Is $50I/user with a $10IK/venr
maintenance tee. On Vax X600 class machines, the cost s $100I/user and
maintenance Is $201x'/yenr. A four-day. basle and advanced tralning course
would cost $1700/person.

17. Indicate the hostabllity (measure of degree of portabllity) of your
system.

ADAS will run under DEC's VMS operating system or UNIN., \Workstations.
tncluding Vaxstatlons I MicroVax II(GPX). and Sun 3/160 are supported.
Work s under way to port ADAS to the Apollo workstations.

18. Describe how your system supports interdisclplinary abstractions/represen-
tations (l.e., systems engineering, soltware engineering, hardware ecnginecring).

The methodology on which ADAS is based supports svstem design by
decomposing the system into separate software and hardware deslgns. The
two are then combined to torm the Integrated system design. Thus, the
e thodology supports multl-disciplinary design, allowing computer architects
and software englneers to work In parallel on the design. Each can under-
stand the ADAS representations,

19. tlow complete is the methodology - do its principles cmbody

-A development methodology only
-A design methodology only

-A programming methodology only
-A project control methodology
-A management methodology

-All of the above

148

e i N S Y Sl ARk N N N S SRR a b A S S Sl Sa R all Nl cal Vel Saf tofl Mall Spl Saf V. ko ta) Sl Sop Wog hep ol ogh Sob gl ad o vok Gol 3oh Ak ool ool o] -y

1

..'. ’_l

/

1
Fa

’
v

L 2
vt

Rt

L) -
<
D '.‘-
L
.
‘S
»
N .
'Y
‘.-
-~ N n" . J'

v J'Vl‘ e N X N AN NN I ‘.-_'_;:_C.—_‘_a_.

The methodology 1s complete In the area of system deslgn and development,
and the area of software program deslgn. ADAS Is structured so the
desizner deflnes the system as Interconnecting functions, thus enforcing a very
structured design disclpline. Prolect control and management tools are in the
Inltial deslgn stages.

20. Describe how your system supports a team development approach.
(Number of statlons/users).

ADAS allows any number »f users and 1s set up so that portions of the
syvstem can be developed Independently and later integrated together to form
the total system. This allows users with different areas of expertise to work
Independently of the total system belore bringing it all together.

21. Describe how your system supports design trade-offs.

One of the major advantages of ADASN in design and analysls of systems 1s
the ease with which the systemn model can be created. changed. and re-ana-
lvzed 1o evaluate system trade-offs. The Information reported from an
analyvsis or stimulation can be easily checked to deterinine the effect of
changes even when changes are made during a simulation.

22. Indicate: the range of problems to which the system can be applied.

ADAS is best suited for multl-algorithm. multi-processor system desien.
Gienerating of mierocode tor a custom chip set. mapping instructions to the
most opthmum areas of a CPU. and determining the best hardware configura-
tlon for a specitic software function are just a few of the appllcations tor
which ADAS has been used.

23. List the names, addresscs, and phone numbers of five (customers) major
users of your system.

Todd Carpenter
Honevweldl

36600 Technolosy Drive
NMinneapolls. NIN O 551N

G12/7S2-T 112

149

.0,... B A AL A R S0 Baca b b S LB L A 0 8 Anlalal

;w'_’-" ol B ol ol ahd gl A ok oFh SRR ohh o' R 'S a'ath ol a'd W'vmnmmm
N !
A

e
~?..

A
RN

L

3‘.
v/

Dan Nuash

R Rayvtheon Company, Mlssile system Dlv.
- Hartwell Road

g Bedford. MA 01730

o =
s

B 617/273-900
! £
nonl
o+,
e

) 4
.
>
el

ol

"

5

L
rFE

AR

n,"l.r!‘

|

4

b~
SRS
h‘. -
- '.-

._-"..
l- u..
-.-"1-'
‘\' l.
.,

P

SN
’. ,l
= S

»

l."f

« e
<
»

A s

[N RN
i »! >
“I k'l 'l ‘l ‘.

0
Tt

i
LN

PP .’
SIPRIA

4 e S A

Y
WA Yy

LYo
w

P
LY
oy

150

T @
'.\{".\‘.S
St S LS

e

A
-

T S e S
-J‘_: 'n”'\. \."..-f\f\. NI'-.’
- N L)

Ny
AR

L I Y e e e W TV T R T L% e LTINS e > R
oL S LT MJNJ%-~ﬁ$¢:v‘y Lt v 0 AV
; P S Y D,

~

1
.

T

-
.

a
i

g

¥y ey
Pels

ry s
«a

WS,

TRW
c/o
U.S. Army Strategic Defense Command
ATTN: DASD-H-3BY
P.O. Box 1500
Huntsville, AL 35807-3801

151
BT C ACNE Ry "‘.r-'- . .‘ .’ AR R N) : NI AT AT \ SN
- ._-._‘\--._,_\':‘: NSNS " : RSNy ; o ‘hs.'- W \-

Torr
Y

LY
ALY

fode

.
s

PR
AL 1

R

e
.

l\./‘ KN

PGS

-
a7

"4
PN
} V'Y

ra

.\," " ._;.
Wt S

52
Vs
»
\.ﬁl.f"’

,
Le "
e

PP TR B I S AP AT S)
WL e RERLC LTS
T et a (ot aia

S

At

hY
s

s
“w
S o

-
4

w
o

-

o

o0
.\

KA.

~
LS
-

4
oL,

-
!
*l

i,
%40

A

-

"r
[2%

Aty

.

LA M A S — 8 6 4 s s & &

e

[N

T

4 l,' ‘,'\l

e
a 1

R |

AR
- I‘l

TRW

1. Describe how your system supports early detection of Inconsistencles,
closure and errors.

The system allows all requirements, design. and test Information to be
recorded In an element-relationship-atiribute (ERA) data base. Because the
information Is In a data base, It may be querled in varlous ways to allow
analysls of completeness and consistency after the completion of a methodolo-
¢y phase. The DCDsS query and analysis syvstems provides automatecl
analyses which provide the user a listing of anomalles In his speclfication
compared to what should have been defined in the data base. at that point
in the development process.

The primary objlectlve of DCDS is to Incrementally generate and verifyv
reaulrements. design. and test Information in such a way as to increase
software development productivity and to attaln greater software rellability.
These two beneflts are expected to be achieved through the following
ancillary benefits:

1. Increased Understanding of Distributed Software Development -- hy
identifylng a sequence of decisions to be made to accomplish the develop-
ment, ldentifying the criteria for making the decisions. providing a method
for representing the intermediate prodiets, and identifying consistency criteria.
the nature of the design process is more fullv exposed and can be better
understood by software developers. Increased understanding of the softwarce
development declstons results in a separation of concerns so that needed
development declsions can be made In the correct order. at appropriate times.
and with less iteration.

2. Early Requirements [Kmphasis -- syvstem and software engineering in
the development of a Data Processing System (DPS) and the requirements for
the software that i1s to run on It concentrates on developing clear. complete,
consistent requirements early in the development phase. Thls approach has
been shown to have an Important role in reducing software breakage. sinee
otherwise, the “real”™ requirements are often uncovered late In the develop-
mment, thus requiring iteration back through the development phases.

3. Automated Consistency/Completeness Analysls -- a slanificant
objective of the DCDS methodology and Janguave desien was the jdentifleation
o conslstency/ecompleteness eriteria which could be verifled unsing automated

tool<, This became a driving fhctor for determinineg what should e ineluded
in each DCODS data base. These eriterin are dertved from the semantic rules
153

g
x

[
.

Il

.
ey
'

s

B

[

[}

.

[}

.. .

~'\

~
W ~
TN s

. V—-
X

established in each phase during which data base entries are accomplished
and assure that human errors don't creep Into the data base undetected.

4. Discipline ~- a primary beneflt of any methodology is the formula-
tlon of a systematie method tor performing an activity. This serves to focus
the developer on the speclific declslons to be made. the appropriate order in
which to make them. and provides oblect milestones for the measurement of
progress, The expected result 1s both lower cost and increased rellabllity,
beeause everything is done when 1t is supposed to he done. and In context
with other DCDS methodologles with which it may Interface.

5. Sswurong Traceability -- this means that the consistency achleved at
the software requlrements level Is preserved by the design. that any modifica-
tions to the requirements level is preserved by the design. that any modifica-
rons to the requirements can be directly traced to the portlons of the design
whiclhh trplement them or tests that valldate them. Further. any portion of
the design can be traced back to the satisfaction of some requiretnents/design
Jdecision. In addition. traceability between key elements of each data base
are provided so that change of any such elements antomatically identified
npstream and downstream elements that may reguire changes. 1 the

. y
ol

j-{ properties of the requirements are preserved In the design by construction.
-:: '-j errors from poor traceability should be absent from the code. and the

AR reliability of the end product is thus Increased. [Furthermore, the cost of
- pertorming modifleations of the deslgn In respounse to moditications to the

requirements during the lmplementation and maintenance phases should be
reduced by the established traceabllity.

K

v
.
o

2. What type of progress metric docs the system produce? [s it quantifi-
able measure of completencess?

§ O

}I
N :
E) No automatic metrics are provided. However. knowledge ol progress status is
- . » v .
-,»::.: known because of knowledge o which of the 34 methodology phases the user
"*.“: i~ working tn. [Fach phase or activity has a recognizable completion criterin
« ~o that explicit movement from phase to phase can he recognized.
[\ s
'-:_“-‘
'.}‘_-: 3. Deseribe how your system supports documentation, program manhagement
o and control.
.\"An“
«™a
._"_' 4. Documentation: Central Project Nnster Data Base and the Query
H‘ » '] . 'K} . .
:_-:_ copability fneilitates the creation ol syvstem documentation (textual and
% araphicallyy from the specelfieation and desicn information o the data hase.
SRS
At
e b rocraan Nanaeement and Control: “The program mnnager s
2_«‘ Stpperted by the cverndl Distributed Compating Desien system (DCHS)
S
'\J_\
O
Y, ¥
i n;_\
)
AN
o™
ot e T T e T T e T O T S O T o e e O S S O o O I N N S S L S e
. wn AAN ALY \\'\- \.""'\\'\-"|~ A (R ‘\.\."“‘\.‘.\\ \.\N'\-.'\.‘ NRY '*,. '\"h'& ~

e il il ol Al Aol el Sug Rl L B A B A L AV Ath ata At ARA sl APE o Bh AR il o SR AL B Sa- SAT AV B at S ot fal Ra® Rot Lol Lol Balk Bof So b Sk 1 W'“W“““W‘j

\ .
¢
r oG
i
-
,.l
n. o
.
:f S Concept which 1s designed to Increase software development efficlency and
Y effectiveness: to thoroughly address requlrements to galn the cost and

schedule benetlts of gettlng this done correctly. understandably, and early:
and to provide life cycle traceabillty from requirements to test. The
ultimate benefit to the program manager Is reduction in risk.

4. Describe how your system supports real time design.

DCDs was deslziied from the beginning to provide the means to handle real-
time deslgn. concurrency. and parallellsm. Real-tlme design is the province of
the Distributed Design Methodology (DDM) where means are provided to
express the design of Individual software tasks the conditlon under which
they are avallable for dispateh. thelr relative prlorities. and the appilcation
operating system rules for determining dispatch. The design resident in the
dara base is directly usable for design slmulations to establish that real time
processing can be accomplished. DCDS iIncorporates a mechanlsm for
identitying and marking performance vallidation paths within the syvstem
model.

5. Desceribe how your system supports concurrency, parallelism.

Coneurrency and parallellsm is handled initlally during syvstem analyvsis by the
syvstem Requirements Englneering Methodology (SYSREM), which Is an
(‘ extension of the techniques described In Paragrapl 10.2 of NIL STD--199
(USAF) and in the Department of Army Fleld Manual 770-78. particularly
the applicatton ol Functlonal Flow Block Dilagrams (FFBDs). FIFBDs provide
a powertul means of depleting system functional tlow. but leave unanswered
other Important system Issues needed to attaln adequate syvstem delinition.
The more Important ones are as follows:

’

LI N

PN

W

«

-How 1o decompose and allocate svstem performance. not Just system

e.

Minetions.

s s .
[
"
~".

-How to accommodate the need to shimultaneously deal with concurrency
or parallefism.

-How to clearly separate the standard (expected) svstem operation from
the operational constraints caused by subsyvstem latlures, limltation ol available
resourees (oo interceptors), ete. inoorder to o attaln o a clenr perception of
- sv=tem operstions under various conditions without clattering up the standard
Fanetional Flows,

. -Hlow to determine when fanctional decomposition s sufliciently complete
oo support proper alloestion to the components of the svsten.

AR |

R e R RO

. ¢ "f.nfLA.\Aa.u';.Am

s

L5

-
«

-"y

S

oA
H

FRI R]
s 6 a

&

e
LAY

Ol g
A

.‘.a--i.‘

B

AL
ey

5107,

,
Sy
MR

Dl
Y,
'."

e

.

atse

LI]
e

. v
P
> 8 .

W

Ly

LY

-How to derlve needed coordination functions to control competing needs
of various functlons of the system.

-How to derive needed Interface functions to support communication
between systenm coniponents.

-How to detine the conditlons for transitioning from one systemn functlon
to another.

SYSREM was motivated In its design to extend MIL STD-499 and FMN 770-78
concepts to address these lIssues and to provide a formal way to capture
svstem definition In a data base such that automated consistency/completeness
checks can be applied.

Throuch SYSRENL puarallel processing possibilities are identitled graphlcally
Juring the functional decomposition process. These possibilities can bhe
Implemented through the techniques provided in the Distributed Design
Nethodology (DDNI).

6. Is your system constrained to a particular implementation language (Ada)?

No. The DCDs Specilication Language supports the use of any implementea-
rion languace. Bolin Paseal and Ada have been used to date.

7. Does you system produce Ada PDL?

[t supports the use of PDL during the design phases 1o express design. An
early version of an Ada PDL Processor Is avallable In the DCDS toolset.

8. Dcseribe how your system supports life cycle intraphase & interphasc
comimunications.

The DCDS methodologies support each of the software life cyvele phases.
Within each methodology o spectfied set of language constructs are used 1o
explicitly eapture requirements. desicn, or test Information (depending on
which methodolocy s involved), Appropriate portlons of the data base
products in the data base ol one methodology are used to Inttiate the «data
oo o downstream methodologies,

fnterpha=c Cominuniention Is acceomplished as follows:

SNethedtodooy provides steps and Instructions which enide users througeh

SR &

-Centrallzed Project DB and a query systems makes specifications
avallable to everyone working a particular phase.

-Consistency checks are requlred at various Junctures within phases:
these helps ensure consistency among the project team members and reduce
errors.

[nterphase Communication Is accomplished as follows:

-Information and specificatlons from each phase are carrlted forward (via
the proJect data base).

-Traceabllity (from phase to phase) 1s supported by the methodology.
the specilication language. and the support environment (software tools).

9. s your system automatcd, executable, compilable?

DCDS supports automatle construction of executable modules from the system
architecture desertbecd In the data hase.

The underiyving software providing the toois to support DCDS are provided in
an executable verston lor use on a VANX. Although currently written 1n
Pascal. aii Ada version willl he released In October of 1987 which will
support transportabllity to other syvstems (l.e.. IBM PC/AT).

10. Decseribe the graphies support for your system.

DCDs provides graphlical Interfaces fully Integrated with textual representation
ol tunctional control and data oblects for bhoth system level requirements
networks (F_NETS) and software requirements networks (R_NETS). The
sraphical structures provides a method llustrating concurrency. sequence of
operations, and declsion polnts within the requirements networks. [Enhanced
capabilities to allow for detinition of any logical set of structured flows via o
conerie stractare processor are under development with completion in
sceptember 1987, DCDS eraphies are designed lor portability using the
D1-3000 packace on the VAN, This allows (with graphics software emulators)

use of am IBNL PC oas o weaphies terminal. Note that all data s textually
mnintained In the Project Naster Data Base such that full functionaflty of ‘
the syvstenr ean be obtained without eraphies--for instance with o VTHLOO

rerminal.

157

IR M\ R A h S aR Tl Rt bl SR N S A L S SRS LA i g s bR g r:mwwmw
"

h

¢

o

I__"
o

By

11. Describe how your system supports concepts of:

",

o

::' -Early prototyping vs. rapid prototypling

‘::; -Software reusabllity

v -Information hiding

‘___ -Packaging concept
- -Abstraction

:‘ -Typing

e -Evolutlonary development

) -Generics

A -Macros

N -Data flows

:::: -Control Ilows
]

= The DCDS concept of early development of critical algorithms and their

evaluation via simulations built rapidly from the data representation ol the
svstem architecture supports both early and rapld prototyping.

e

The methodology assumes an archive of reusable algorithms is avallable and
directs the module designer to consider and select algorithms to be used In
the system.

T

o

:: The methodology Is geared toward decomposing a system Into specification

_'j: packages which Identlty the interfaces. functlons to be performed. and the

y performance requirements assoclated with the functions. This approach allows
P the deslen ot individual functions to proceed with minimal Knowledge ol other
[-. parts of the system.
-::', The methodology and Its supporting specification languages support the

' development ol data structures from a high-level specification in requirements
; to a low-level specilication In design. Also DCDS directs the user (software
j: encineer) to functionally decompose a svstem down to the stimulus-response
- level, This requires the software engineer to think at various levels of

. abstraction as the system Is belng developed. The subnet facilitates thinking
b at higher levels and decomposing Into lower levels,
@
::j DHODs requires the use of data objecet typing to define data structures with
::' The ~yvstem.

=

:'; DHODS ~upports the developmient ol systems in threads/paths which correspond

P griney dnterfhees or pessaces/transactions 1o he processed by the systenn.

2
NG
b

o

® 158
-~

P e T A" a® a o ®a® "m " aTa® " A A" s s, R I LIRS) SA AT
\?-,‘v’\ "['"I'f -J,-"!I e {-'{- J:J-:'_/ ¢ ,l",_f’ E .".-"'.‘J'_ fk'. AR ; : S . \"\"\"u
Pl a 'n . .1 . o o8 2 i A A X

.Y

-'h\"h.. [y 'I'L\‘,,\ v
-\’ .- !‘l. .‘h 2

L]
‘-"'-"3.

™
L)
!
¢ i
o
‘5 :_.
NG T'his partitloning of the system. according to 1ts interfaces, supports the
v S
. DCD=s model(s) and speciflcations may be changed or expanded appropriately.

_—y
»

b A special version of DCDS supports the definition of Ada generic units.

4

SR DCDsS contalns capabllities to generate hlerarchy/data flow structures from
-': the requlrements and design specifications stored In the Project Master Data
-

R = Base. Also. a static data flow analyvzer tool Is provided.

-

- o The requirements networks (R_NET, F_NETSs) provide conditlonal nodes (i.c..
: “or” node) used to specify major declsion points with respect to the sequence
.~ f ol the specitied processing steps.

) 12. Is there a paradigm embedded in your system? If so, describe it

o - briefly.

NI

>

:- :: An overall paradigm for DCDS Is restdent In the model shown in the

" r dingram and tables following the questionnalre response. some of the method-
- ologies also incorporate their own paradigms tor achieving requiremonts and
A desten.

- 13. Describe the external tools with which your system interfaces (Lool

{ i compatabllity).

." - -

" DCDS has an Open Architecture for assimllating externallv-developed tools
PN and transferring information to/from external tools. The common interface is
S -

- the Project Naster Data Base (ERA Model) with the automated tools used to
ps enter, extract., and format data stored In the data base. The current DCDS

Integrated tool-set consists of the following major functions:

-Transiation: Analyvzes the DCDS specitication language input statements

. " 5. ..5:1}"1:115.‘ \

T and subsequent entries Into the data base corresponding to the syntactic/sc-
i mantic detinitions. Thls Minctlon provides Initial copsistencey checking of the
. > fpnrs,
o) -::'
S -bixtension: Alows modificatlon to the nnelens of elements, relationships,
Y and arrributes o DODS Ianguages 1o permit expansion ol language constriets
Y 1o meet special user/project needs,
- @
AT . . _ :
b .,_ -Completlon and Consistencey Analvsiss Provides statle flow analysls and !
. the capabilities of o cenerallzed exXtractor system for cheeking completeness
o:: A copsisteney nuainst o semantles rudes for the data base contents.,
S

159

2P E @ A s
14
A

o "

RN AT
YRS Ny

et s ey
"l VOO ST CREN
() Mg M X M M M o ¥

t

| LT LR L LIRS LT A L)
... 5.\“‘ ','v ,,‘? \)‘.‘J'.,- n",:-" .

T
LS TR TN
0 2 1 N X X ""

P e W MR, Y G S N
AR -ux" Va4t -s'-"\."'-."

(ALY

£

[REREATA

R
e a1

R
LR N

"'. L)

-Database Query and Retrieval: Provides output from the data base via
sets defined by wuser query commands to allow manual and predeflned analysls
and automated docnmentation.

-Graphies: Allows interactive development or modification of structure
graphles and produces hardcopy plots of the structures for documentation.

-<Imulation: Provides the means to create, execute. and analvze
simulation of the functional operatlon of a svstem under development in
terms of the requirements/design established In the data base.

14. Describe how your system supports hierarchical decomposition and flow
direction (topdown, bottoms-up, both, etc.), architcctural perspectives (designer
creativity) and object-oriented design.

DCD>s provides a logical topdown decompositlon of the problem. [t uses
hierarchieal decomposition only at the systems analysis level to establish
Systen or Segment apecifications. Unigqiie rules are provided for system
decomposition to assure that a functions decomposition defines its subordinate
function within o control flow context that allows parallel representation ol
SVSrem actlons.,

DCD= uses an augmented functional decomposition approach to develop
requirements and designs, 1t Is not just a simple. top-down method ol
decomposition. The sequence of functions. potential for concurrency. and
control flow are combined with Tanctional decomposition to produce reguire-
ments and design models. Additionally, DCDS encourages some bottonup
development Jduaring the early stages of the system development process when
eritical assumptions and concepts must be shimulated, tested. and proven.
This approach provides a clear, concise understanding of required software
actions ureathy reducing tiie ambiguittes that abound as the traditionat
functional decomposition approaches offered by other systems.

Desien creativity is enhanceed by achieving a clear anderstanding ol system
and soltware requirements earlyv. by providing a road map (not o coustraining
cookbook) of o snugested sequence of developer actlons in the methodologies,
At by providine nnderiving tools 1o assist the user in every phoase of the
~vatenr definition and soltware development.

A~peet~ o ahjeet oriented desten are captured in some abstractions and
approaches gsed i DOCDS0 Objects of interest are introdoeed o the soltware
coquirergeat- phoase swhere the required data transformations are preeisely

delined o the pracessine locie dinerains desceribed above,

160

- 15. Is your system supported by formal syntax & semantlies? Describe
briefly.

bp The languages used to detine the requlrements, design. and testing all have a
formal svntax. In addition. certaln semantic rules are expected to be
tollowed by the users. For example. If the user deflnes an Input message, he

> .

: s expected to assure that he also deflnes lts data contents. These semantle
rules are the basis tor the predefined consistency checks avallable for use in

! rhe varlous methodology phases.

s

16. Oulline typical utllization costs for your system (cost oif acquiring, using,
training, & malataining it).

—~ This 15" a Government owned system. Although there Is no cost to acquire
" i, Goveronment approval must st be attalned. In additlon, tt currently is

noet being released 1o foreien users. Also. training material Is currently under
Jdevelopment.

17. Indicate the hostability (measurc of degree of portability) ol your
- system.

The underlyving DCDS software Is cuwrrently hosted on a VAN using the VNS
cperating svstem. Additionallv, the Ada version of DCDS is currently belng
(' re-hosted onto an IBND PC/AT.

o 18. Describe how your system supports interdisciplinary abstractions/represen-
tations (i.e., systems engineering, softwarc cngincering, hardware englneering).

. Questions 1R and 19 are similar in "nature and scope. Therctore, only one
answer was developed. The answers (or both guestions Is presented under
Question 19,

19. Tow complete 1s the methodology - do its principles embody

’-—
7 -A development methodology only

-A design methodology only
.. -A programming mecethodology only
l-:‘ -A project control methodology

-A management methodology
-~ -All of the above

DO b= - anooxaremely comnprehensive seto ol ve methodolocies. It Tneorpo-
coabes 2 plhiases oand oapproximately 1HO steps. Fhe ve methodolocies within
»
; 1y Iy~ e
~
161

Vi ke
N

IS

-
AR
-
~
o
-
P

x

ol .’

TR
-

AR

.
.

v

d
P
.

ey
r o . I B L A
l‘!"-". PP
P sy LAY AN
LI v N

I

7 ‘.' . 'Sf".l'&x" B

4

.n ‘I

2

kY

» w l“‘ i
-.::-’ .'x:l‘,.

SN @

S

RS)

x x

Y

LA

P

-Syvstem Requirements Engineering Nlethodology (SYSREM) for defintng
aned specifving system requirements, with an emphasls on the data processing
subhsysten.

-software Requirements Englneering Methodology (SRENI) for defining

syvetem software requirements, with an emphasis on stimulus-response behavior.

-Distributed Deslegn Methodology (DDM) for developing a top-level
architectural design for the syvstem software. Inchuding distributed deslgn.

process desten, and task design.

Nodule Development Methodology (NMDNI) for Investigating and selecting
aleorithms. detining detailed desien. and producing units ol tested code.

-Test support NMethodology (‘I'sMN) tor defining test plans and procedures
qeainst requirements, producing an integrated tested system. and recording
rest resulrs,

The dineram following the questionnalire response iHlustrates how the DCDS
Nethiodologies synergistically work together to support the system developiment
lite evele from svstem requirements through integration testing., In addition
tee ~npportine the readitional system life cyvele phases, DCDS supports project
monneement activities. The DCDs project master data base Is a repository
fer <toring system specification. decisions, assumptions, ete.. which may be
nterrosated or summarized In reports tor project management. The DCDS
svstemn specilieations may be reviewed by management for accuracy. complete-
ness and eonsisteney using the DCDS query capability.

DC D= also <upports the manazement ol solftware development. Specilleally.
the Automated tnit Development Folder consolidates the requirements, design.
conles, test plan. <chedule, etes, into one file which may be updated and
aieried by project manngement.

20. Deseribe how your systemn supports a team development approach.
{Number ol stations/uscrs).

DC DS hos contemplated the srobability that nost syvstems are developed by

et o vrbons di=ciplines aned the methodolosies are destened with that in
satnds T pdenl aesers ores
162
e T ow L Tm TR T T T e T e T S e v T L] -l N, m, . - '.".."' .-_-h-:-', et - “ e
WLt '\F-&’r'x."_"'v Lo "'-Z"-;’s'\' AR SO LA AR DRI PC OO LA CR SRR Oy N;-."". -
o N R X aN e _§% M M A M uN X o N W, 0,y w,ye.ge, R ' »! s

Ty

e Y

Y

SYSREN: system Englneers
SREN: software Requirements Englineers

DDM: Distributed Process Designers (l.e., deslgn system
software architecture)

MDNI: Detailed Deslgners, Implementors

TDN Integration Testers

Facli has been ¢lven his own language set to define the results of his efforts
inoddatn bases. These may be distributed for use by varlous teamed contrac-
tors or for separate departments within the same company. With appropri-
ate conlicuration management, multiple users may work with a single data

Pise,
21. Pescribe how your system supports design trade-offs.

PDara bases provide the information to support simulations at different levels
of ddetail, The Jogle strietures (specily functlons. control/data [low, interfaces
and performance objectives) that are defined in SYSREM (under development)
aiied T SREDNT (exists) provides the simulation framework. T'hus. it the
restitli = e not ax expected, there 15 no issue as to whether the requirements
o the simnlation idelity is the problem. When the requirements. represent-
o by the logle diagrams, are modified to Improve the syvstem's performance,
the ~imulator Is automatically changed In accordance with the changes to
the dogie dingram struactures, Other generle simufation output exists for
desien rrade-offs that allow the user to tallor a slmulation to the level of
Gilelity approprinte for bis desien. and then to allow the simulation to iin
nsing the contents of his desien data base as a direct Input to the simula-
RIS

22, Indicate the range ol problems to which the system can be applicd.

D= i~ fesioned P daree, distributed, real time, embedded systems, sueh s
ot coptemplated for <DL However, Tt ean also support smaller svsten.
pencdithie svstemss non-rend time syvstems, or non-eimbedded computer systemes,
The diser ~hmply =Kips the portions ol the methodoloy that do not apply 1o
s pdiention,

163

23. List the names, addresses, and phone numbers of five (customers) major
users of your system.

Miack Alford

GE

P.O. Box 8555

Bullding 7. Room 7236
Philadelphla. PA 19101
(215) 354-2035

Barry Boehm

TRW

Building 02 (Room 1310)
One space Park

Redondo Beach., A 90278
(213) 335-218

David Palmer

GRC

P.O. Box 6770

santa Barbara., CA 93160-6770
(R05) 964-7724

Larry Marker

TRW

213 Wynn Drive
FHhunesville, AL 35805
(20)5) N37-21400

~ .«- 'n‘ ‘l' {.

Cl Barkley

TR

213 Wynn Drive
Fhanesville, AL 35805

(2051 N37-2100

LTl Y S Sy 8
'~,-'l‘7.'l"l.

(e}
£ r

Adlee Brown
Nichols Researehy Corporation

MA@

5

1010 Nemnorinl Parkway
Flonr-ville, N

C200 0 NB3-11 0

b Cx
T .‘.rl‘ [SEAE NS

hY
Pl

x

®.

L4
.

AR

[EE)

2

XA

A

- . »
‘l' “

Wayvne sSmith
GRC
307 Wynn Drive

Huntsville, AL 35805

(205) 837-7900

Carolyne Pasinl
TRW

Building 119 (Room
One Space Park
Redondo Beach, CA
{213) 217-6581

482+4)

9027 R

G
<e—isuow [4SBY0 | a—onmviaisa X
NOLLVHDIIN G
ga»mwh E Aboopoyiaw jaoddng 1s3] - WS 1
£60|0poy1an Juawdo|arag I |NPOW - WOW S
* * A60|opoyi1aW ub1sag painqLaisig [T4] ..~.....
) — £60 | 0poy1aW buyiaauibuj ol
< SJuaw3aInbay asemigos - WIS PR
3) [€—NOS530 | @— NosTO L .
¢ Dan| 03WIN0 | apvmmigng UONOEAX X0 0pouIaN)
ONY <4— NOSO T but113aut1buy sjuawasinbay waysAs WIYSAS il
E S 00N [nav] .
FEvSraY .)
“ON3D1Y o d
-.y!\
.xf.\
,
, AN
Nosx0 | Nois30ysvL | @— NS0 \.
SS300Hd ONV .
HaLNEIHISIO [naa) ooy [ﬂdﬂ SOk
M LI %
.
£d0. 8 N1LBASONS
MY ADOTO0OHLIN ONYIINDN [ETTT) e
NN SININBUINO HVMLIOS (aRsas] ‘A
AUYNIN 1344 ADOOODHLIN CNUIINDND Jy
SINIOWOR PELLEAS v
ALl
-
NIAN MIAM SFOON0A0HLIN b
SINEFEINOX™ T
zo:kw.u.ow& mrifrs SQ00 N
LI ¢
.
OIS NOS30 Nos 30 SISATYNY 8 ned
iwnowy | OFWIS0 | AMVNWIRY SINFGHOR AN,
SLANDN SISYHI o
’ WILBABBNONILEAS v, 7
s~ - O
rd - N N
~—~— P \n\-‘.
_....A.,
2L ONy | ANINA0T13AI0 FHYMLIOS HAUNINOO NOLWNIS30 NOILUN30 o
ONLLB SLNYGRINDN SINFINOR e,
VUOAUN SILLIAILOY #g
o VMLIOS iLEAS PALEAS Y
MIUSAS INBNAIOTBAI0 FHVMOUVH INILEAS NOISSIN ‘5
o
NOILYOITYA NOUVHOST ISV TAD .
ININIOTIAI0 TVOE TN NOLVALSNON T L4300 N waLSAS .m»
2
&
v) 3 .F-\
Ovav 0D NOLDT B oy
Fald o LN NOU vWIPe4 3130 ...r\.
¥ INOISIUN 1 INOIS TV NOBOR .u.
L -
\nd‘l
i)
JT1IAI 41T WIALSAS ¥IINdWOI S1LY04dNS SaAAd o
.. I
¢
5
P
-.f- d
o
3.
el
o
r 1 S r ¢+ f s v ¢ Y P s e . D © N S e 4 N 8 - - . N . L L L A M SR IR T S B) -3
AR AL S e LAY o RIS SRE N « A St .f_fn.4 .-,.‘-... - P A AL-...-.-- PR -w-f..-f- d
2 el Y -. -_;.\ .n. ~.-..~-f\.- . r... ‘.‘.. .-. . .. — n- -.n---\\- \-.\-"-LD -,n-\,.--... .-. o'ty Jl . -..- -.-h-..- n‘...n.v . -'...--........ q,...K..-... .p...?--ﬂ..--..u.. -- -- -..-l. . “-\ .-vanw.-w d

Table 1-1. The Phases of the System Requirements Engineering
Methodology (SYSREM)

WEN YWY TYRARRAY WY T Ra s ="

Phase 1: Define System - Supports transformation of the need into a formal
problem statement of the semi-closed system, which includes the system and
its environment. The top-level inputs and outputs and the performance
indices of the system are defined.

Phase 2: Identify Subsystem Configurations - Supports definition of subsys-
tem configurations which describe potential classes of solutions to the
system problem. This allows definition of the classes of inputs and
outputs of the system regarded as a black box containing the defined sub-
systems.

Phase 3: Decompose System Logic - Supports transformation of the semi-
closed system requirements into the open system's requirements by decompo-
sition to the level where the system’'s perception of the items in the
environment occurs. This allows identification of the sequences of inputs
and outputs between the system proper and its environment.

Phase 4: Decompose and Allocate to Subsystems - Supports continued decompo-
sition of the tunctional requirements until they can be uniquely allocated
to the subsystems defined in Phase 2, and allows identification of the
subsystem interfaces.

Phase 5: Determine Subsystem Feasibility and Cost - Based on the allocated
requirements, supports estimation of resource utilization, cost, and
schedule for each subsystem; identification of potential failure modes; and
definition of subsystem level critical {ssues.

Phase 6: Solve Subsystem Critical Issues - Supports evaluation of analysis
results of subsystems to identify system-level approaches to solve critical
issues to achieve required system performance.

Phase 7: Develop Exception Layer Decompositions - Supports development, of
The additional layers of requirements needed to deal with exceptions caused
by system failures and resource limitations. These new functions are then
decomposed and allocated, as described in the preceding phases.

Phase 8: Plan System Integration and Test - Supports establishment of the
plana, schedule and costs for development, integration, and testing of the
developed subsystems to yield the desired system.

Phase 9: Optimize Qver Designs - Supports analysis of alternative system
designs (subsystem configurations) for selection of the final system.

Phase 10: Produce System/Subsystem Specifications - Supports production of
the System Segment specifications in accordance with customer formats in
preparation for the System Requirements Review or the System Design Review.

S28L€0-98

Sl

CEow e, " AT ATE TS
LA, AR
ERVEER o IR

»
>
>

Yo Jela LN

[P M M S
)

Y

5
sy

PN
)
AU NN

T BN
.

[ag® ai0” e Arein st uie pAR VA gt it i il il A TP RN

aba"ta Rte e Al Ak Bl A Jl et et it oAl R e

Table 1-2. The Phases of the Software Requirements Engineering
Methodology (SREM)

Phase 1: Define Elements and Build Data Base - Supports initial definition
in an RSL data base of the DPS requirements by identifying the interfaces,
message flow and contents, global information, and the processing flow to
respond to input messages.

Phase 2: Evaluate Kernal - Supports consistency/completeness checks of the
data base produced n Phase 1 to provide the software engineer a 1ist of
anomalies for his correction.

Phase 3: Complete Functional Definition - Supports detailed definition of
data and additional consistency/completeness checks to assure correct
membership of data within messages and repetitive sets. Also supports
evaluation that all data s both used and produced within the defined
processing logic and analyzes the logic of the defined data flow. Provides
information of anomalies for correction.

Phase 4: Complete Management and Control Information - Supports examination
of the completeness of traceabiTity within the data base and the status of
open issyes for solution and provides identification of needed corrections.

Phase 5: Accomplish Dynamic Functional Validation - Supports building and
executing a functvonal simulatyon to accompTish a dynamic evaluation of the
OPS requirements directly from the data base. This provides a means to

examine the DPS system operation within an environment defined in a user-
built simulation driver,

Phase 6: Develop Performance Requirements - Supports identification of
paths on the processing Tlow diagrams to which performance requirements can
be allocated and the points on these paths where data can be recorded for
use in evaluating attainment of the performance requirements. Also sup-
ports definition of how the <system uses the recorded data to determine a
pass/fail criteria for each performance requirement.

Phase 7: Accomplish Analytic Feasibility Demonstrations - Supports evalua-

tion of different algorithmic approaches within the context of the process-
ing flows in the data base and to evaluate allocated performance require-
ments for pass or fail within the environment modeled by the simulation
driver. Assists in identification of infeasible and non-testable require-
ments.

Phase 8: Produce Software Specification - Supports production of the Soft-

ware Requirements Specification 7n accordance with customer formats in
preparation for the Software Specification Review.

9Z8.-£0-98

mmmmu-u-u P Y W U W Xy W T o WO EUTV TR Y R R

-

PP YW

-y

s |

LA

ER]

S5
;

oty

L 4

Table 1-3. The Phases of the Distributed Design Methodology (DOM)

' T e T e

Phase 1: Accomplish Geographical Node Design - The first of four overlap-
ping levels of design which defines the geographically separate network of
nodes. Results in requirements and constraints for local node design.

Phase 2: Accomplish Local Node Design - The second of four overlapping
Tévels of design which defines the design of local nodes of groups of com-
puters or computer Ssystems connected by a local communication system and
interfacing with the communication network connecting the geographical
nodes. Results in requirements and constraints for computer-system design.

Phase 3: Accomplish Computer-System Design - The third of four overlapping
Tevels of design which defines the internal design of local computer sys-
tems based on common architectural considerations. Supports identification
of the details of the interconnection networks and protocols between the
local computer systems. Also supports decisions as to allocation of
requirements between various software levels and the hardware. Results in
requirements and constraints for local process design,

Phase 4: Accomplish Local Process Design - The last of four overlapping
Tevels of software design which defines the details of the processes to be
allocated to the various computer systems. Includes definition of applica-
tion tasks and their budgets scheduling/dispatching criteria, priority
structures, intertask communication, error handling, overload control, and
process control. Also supports definition of global data management,
access protocols, and interface refinement. Results in the requirements
and constraints for task design.

Phase 5: Accomplish Task Design - Supports application of process and task

desTgn ruTes to identify the task control routine and its layers of sup-
porting application routines. This includes opening Automated Unit Develop-
ment Folders (AUDFs) which are used to organize, in a single place, all
aspects of the development of each unit of code from requirements to unit
test for the tasks to be designed. Results in the requirements and con-

straints for the detailed design implemented in the Module Development
Methodology (MDM) of DCDS.

Phase 6: Produce Design Specification - Supports production of the Software

Top Level Design Document n accordance with customer formats.

LZ8L€0-98

169

ol e e e e LIPS
S N N M e P [8y
L N R I S

B - .
- B ., =, .
PN P AT N e Ut I P

s . . : (R R Sl S, S
‘.x':-\'-.".--\';x';{ FT O R 0 . AL .0 &t e pe m e i e

L

o

e ha ERwgwETRTSTRETEESETE D
st nav Nav b st Eat Gat Sat RaV it Lab eV Al it AL ISkl A
La" .o B wa'earh avh gte arh gt gte a¥h ath ati ol all ahh al
m'(l.'(-~u'x

oo

l"}h:

i

.4

>

e Table 1-4. The Phases of the Module Development Methodology (MDM)
-a

.:_-\.:_

"

.:_\"'_'

4 ;-_’

E}{;

ht":-!.

&

" e Phase 1: Identify and Analyze Potential Algorithms - Supports identifica-
N tion of algorvthm needs and their interfaces, evaluation of existing or new
“ algorithmic approaches, and determination of timing and sizing estimates of
N candidates. Candidates are offered for consideration by the process de-
AN signer.

T o Phase 2: Define Reusable Modules - Based on the evaluations of Phase 1 and
e Process designer feedback, supports selection of a candidate set of algo-

rithms for development and supports reusable module design of selected
critical algorithms.

Phase 3: Accomplish Design of Routines - Supports preliminary achievable
desvgn Yn POL for routines t0 accomplish algorithms that are not using
existing reusable modules. These preliminary designs, their requirements,
and their interfaces are used to initialize Automated Unit Development
Folder (AUDF). After PDR, supports development of detailed designs.

Phase 4: Develop Unit Test Plan - Supports development of the unit test
ptan 'n the AJDF. ATso supports definition of test procedures, test cases,
pass/fail criteria, test drivers, and data loggers for unit tests, where
appropriate,

Phase 5: Code and Unit Test - Supports development of the in line code to
replace the POL comments between the PDL control flow statements of
Routines entered into the AUDF. Supports prevention of control flow
changes within Routines without Task Designer approval. Also supports
recording of unit test results in the AUDF.

828.-£0-98

TR T T OV T TV N W YT YT Y LYV YT v W RETR N b Bt b a8 o Sat Lot SaV RaY bl bl atfh AR U Tl Sl

.. Table 1-5. The Phases of the Test Support Methodology (TSM)

2NNV T

%

oo,

2

0 el

® Phase 1: Prepare Initial Test Approach - Supports finitiation of the TSL
data base from the SSL, RSL, and DUL data base to capture the information
necessary to produce the requirements/verification matrix, and the test/
requirements matrix.

A Sernnid el - M

e ® Phase 2: Develop Test Plans and Environment - Supports definition of the
n major segmentation of the test program into builds, and schedules their
e "»! time sequence. Test names and test aids are identified and scheduled, and
'Q. a preliminary test plan is produced.

) ’l
®

Phase 3: Develop Test Procedures - Supports detailing the test procedures
and test cases with Tnputs, expected outputs, and pasw/fail criteria. All
necessary drivers, harnesses, simulators, and stubs are developed and
- tested. Uses -Automated Test Development Folder (ATDF) and the TSL Data
- Base to organize and plan testing for each build.

- .'. {. ’. !

® Phase 4: Perform Integration Tests - Supports the integration testing and
production of periodic status reports and the final integration test
report. Uses the ATDF and TSL Data Base to record test results. The indi-

vidual builds transition into this phase separately, according to their o
schedule. -4
? 8
' ® Phase 5: Perform Acceptance Tests - Supports the test program for formal &
qualification testing. Acceptance test plans, test procedures, and test &3
reports are produced the same way as for integration testing.
q
VAN
-
-
)‘_‘.
171
e Ry e e

» -.\". "

Ba-alh Sl AR PRl i Sa AL tak Al e £ Al Al s

A 0 R e i e ity " Sde Nalle i SR A el Nl M

> L L

B

[N

L A

s

[I 4

£

gt | P

‘.

WA ,..nn..xw.)

2L
vaTsy

~ e
PN

W A T e
AT e \p/‘

N

‘A el Wl Nal Rel tnd Nal Vol Gah Sl Gok Gel Sl @b Sl Sl el il thl Sl Sl It ik Yl Sall Sl Ball Sail Sal Suk DAl SR Ak et A R S R e e ARl |

[ntermetries. Ine.
733 Concord Avenue
Cambridge, NA 02138

173

CRRRIS IS
. om

-l
RN E I N

174

Intermetrics, Inc.

1. Describe how your system supports early detectlon of Inconsistencies,
closure and errors.

The use of PSL/P3A for requirements analysis and system specification assists
In the early detection of large scale deslgn flaws. Thils Is the purpose for
which PSL/PsA was designed. and has proven valuable in years of industrial
use. PSL/PsSA does thls by ldentifving overlapping, redundant or Inconslstent
Information in the design deseription. This Is accomplished by examining a
sraph of the structure of the destgn.

Once the system has proceeded to lower level design and the system has
been translated to Byron. crrors and Inconsistencles contlnue to bhe easy to
find, because 1t i1s easy to trace code back to the requirements that a
specific plece of code s Intended to satlsty. This also makes it possible o
Jdetermine whether all requirements have been addressed, which assists In
determining whether closure has heen satisfled.

2. What type of progress metric does the system produce? Is 1t quantifi-
able measure of completeness?

After the software system belng created reaches the polnt where the Byron
tools can be applled. each unit In the system 1s marked to indlcate what
nhase of the life cycle 1t has reached. As the code evolves, 1t gradually
passes through each of the phases: speclilcation. design, coding and test. At
any polnt it s possible to query the system as to what phase any given unlt
has reached.

[n addition, tools to perform such metric analvsis as the Halstead metric
have been written based on the information available In the Byron data hase.
Thus, the potential exists lor many such tools, although they are not part of
the cirrent set of tools supplled with Byron.

3. Describe how your system supports documentation, program management
and control.

The Byron syvstem inclandes o docament generator and formatrer whose
purpose i to o <stmplity the process of creating documents which deseribe the
svstern, The user deserthes the docament which is to be produced in o high
povel Inpeiseze enlled Bdee, Tnforming the processor what information to
sadraet rome the code and how to format 1t The aser currently receives

-
|
V

Vve deeumment temphvres with the Byvron systenms o endlivee cenerntor, o aser

.,
.

-,
-

TS T
.
o ‘/.ff.

D W WY

An A‘L‘an‘hh Lﬂ‘mm ‘& .4".;14..;‘.’.. o

manual generator. a data dlettonary generator. a dependency table generator.
ad a 483 style ¢ generator. In addition. work is In progress on templates
to generate many of the 2167 style documents. The high level language
Bdoce makes It easy to create new documents. and It Is easy to Keep
documents current because they are genevated directly from the code and the
comments. Thus control of document verslons tends to become mostly a
matter of controlling versions of system code.

4. Describe how your system supports real time design.

Real thime design Is supported by the PSL/PsA tools through the abllity 1o
dezeribe timing and state transitlons within the system. [t Is possible to
analyze the behavior of the syvstem based on the Information described.
When the design passes to the Byron system, the user may apply all the
n=ual Ada construets associated with real time applleations, and may tailor
the use of rhe Byron PDL to support the use of these constructs.

5. Describe how your system supports concurrency, parallelism.

The PSL/APSA tools permit the user to casliy deseribe parallel processes.
rendezvons, and the ke, and to anaiyvze systems deseribed In this manner.
MWhen the design passes to the Byron systeni. the user may apply all the
u=ncd o Ml construets associated with real time applications, and may tailor
thie n=e of the Byron PDIL to support the use of these constructs.

6. Is your system constrained to a particular implementation language (Ada)?

The PSEL/P=A wstem s wholly ineusee tndependent. The Byron syvstem
pelles on an Addie beed PDILL and Is therefore slanted toward Ada. However,
The ~v=teqn hns been usedd to ereate both Fortean and ONIS2 code in the
st and other daneances would present no ditferent problems. One custom-
croddoes not even own o Adn compiler. The Byron system s most easily
tcl tmanradiy wsedy however, when the implementation laneunage is Ada.

7. Does yvoiu system produce Ada PDIL?

The svstem 0 oable o produce Ndne DL oot several stages, Plest, oo the

Jtnetire Between PSE/PSA and Byron oas desertbed above, Secondly, Adn

e~ coptaining berho comments and skeletal o code 0 PDIL deseription) enn

e

roan el spectfieations abresdy analyzed into the Byron

174

LN ‘.r.'.'. - - - R P S A
. "\1.' - "-’J./.' et

TV T V.77, Lam)

o am e e

>

i

P

“

R
5y

8. Describe how your system supports life cycle Intraphase & interphase
communications.

The ease with which one can communicate between phases depends on which
phase one 1s In. It 1s easy to communicate between requlrements analysis
and system specificatlon, and also between the phases following design. This
1s because the form of the design durlng requlrements analysls and system
specifleation is the PSL/PSA form, whille the form for the rest of the life
cvele s that of the Byron PDL. While the Information is in one form or
the other. the phase delineatlons are falrly loose. Baslcally. whatever form 1Is
applicable 1s being expanded on In whatever manner s appropriate for the
phase one 1s in. The Information created during the previous phases is
present in the torm that is belng expanded wupon.

The communleation between the system specification phase and rthe design
phase 1< more rigorousiv controlled. When the PSL/PSA code 1s deemed
complete, a tool s used to create Ada/Byron code skeletons hased on the
PSL/PXA code, incorporating the Informatlon available in the PSL/PSA code
in the Ada/Byron code.

9. Is your system automated, executable, compilable?

The <ystem s comprised of a serles of executable tools which assist in the
analysis of statements of svstem design. These statements take two forms.
tnpur code to the PSL/PSA system and Input code to the Byron systeni.
The Byron code 1s In the form of Ada code with structured comments ancd
<: s compllable. There 1s a tool which automates the translation [rom
PL/PsA code to Byron code. In addition, factlltles are provided to permit
the usep to taflor existing tools to create new tools reporting on the informa-
fien In rthe deseriptions off the system.

10. Deserlibe the graphics support for your systemn.
The =v~tenr rans primarily on malnframes: however, o PC-hased front-end s

avatlable awith PSEL/PSA which s complete structured analyvsis workstation
coanbining analvsis, eraphles, and documentation acllitlies Inoa flexible working

avircninent. The DByron tool Tsell has no graphleal interfaces It s possible,

Peavever, o Pyron users to o write both eraphieal and interactive reports
etne the Byrens Proceain Library Acecess Package (o set of Jdataboase query
1
1

oo owritten i Nddn aned provided o with the prodhaet)

LR ML RS ot AT o ot SRS s AAS aSRYolS JRA' M R Rt lav Bav Bat (it Aol il Aat Bob Rel R V- Aob Bl Bak S0 Aot 48 Aok A ‘s S0 SR R'A Al 4a fea Rty fin Big Bio Ahe Bie A ARa Sl SRk - an]

11. Describe how your systemn supports concepts of:

-Barly prototyping vs. rapld prototyping
-Software reusabllity
-Information hiding
-Packaging concept
-Abstraction

-Typing

-IEvolutionary development
-Generics

-Macros

-Data flows

-Control flows

Ir s possible to ereate programs with the Byron Program Library Access
Packave which will examine the Ada speclfications which make up the high
level desien, and automatically generate skeleton bhodies for them which
simitlare the intended working of each Ada unit. Thus it Is possible to
create o preliminary executable at an early stage in the design work.

Since the documentation for each unit Is included in and with the code. the
code temrds (o be better documented, and the documentation Is certain to be
current and In svne with the code. Removing these pitfalls make code more
castiy reusable.

Beenuse of the structure ol the data base in which the information about the
code s stored, code Is naturatly divided into interface and Implementation
code, Intertace code is generally just those Ada specifications that the
ourstde world needs to access, while implementation code tends to be not
only the bodies tor those specitications, but also whatever utility packages are
e 1o handle internal detalls which users of the syvstem as o whole <hould
never Know abont,

The Ao paekoddne mechanisin I~ fdly supported, I addition, the data base
ontains the concept of Teataloes™ which are divided into the interlface and
implementation parts deseribed above, These catalogs provide o higher level

pockacine mechonisnn, For o instance, o user might have o trig packnge, o

&
lﬁ-‘

numerlieat fntecration and differentintlon poaekage and o Hnear proeramming

.'-,.. l‘/l.

pockace, adl o of whieh icht he crouped together to form o math eatalog,

[ATAF AR AT RINEN

I:;A:’l P “
e

178

Y

i & ey y N 5 . - PG et
2 sf:!-."“;’\ AV y v o A A e

"’\"-\.’*.‘.-.':-."

Y

[S 2 4

- e - -

e

bl 4
v

When the system Is Inltlally deseribed using PSL/PSAL a large «degree of
abstraction Is possible. As the system evolves, the abstraction mechanisms
gradually become those mechanlsms provided by Ada.

Byron provides tull access to Ada typing mechanlsms.

The system permits code to evolve easlly as new requlrements or new
Implications of old requirements are discovered. This may result in newer
portions of the system undergoing design while older portions are in the
coding phase of the life cyele. but thls poses no problems for the system.

Byron provides the tall capability of Ada generics.

[t would be possible to write a macro processor using the Byron Program
Library Access Packace. but no tool for this purpose currently exists.

PSL/PsA permits data flow analvsis as well as other design methodologles,
In addition. the Byron data base maintains the Information needed to
construcet data lflow dingrams. although no tool 1s currentiy provided to
perform this analysis,

A calltree generator is provided withh the Byron tools. [nformation exists for
mmore detalled flow ot control analyvsis, but current tools do not take advan-
tage of it.

12. Is there a paradigm cmbedded In your system? If so, describe 1t
briefly.

The PSL/PSA paradigm 1s that a svstem may be described at a high level
as o oseries of objects or entities and the relations between them. These
relations may take many forms and describe the interactlons hetween the
objects /entities.

The Byron paradlem is that after a system has been speclfled. 1t s possible
to deseribe it usine Ada code and stencetured comments. In general, the
desion will beein primarily as stroctared comments, and code will be added
as the desten and coding cet more complete.

13. Describe the external tools with which your system Interfaces (Lool
compatibliity).

It i~ en=yv o to Interfaee the Nera-Byron tools with other tools, beeanse hoth
PSL/P<A and Byron provide tools to permit the user 1o extract information
Iremn the dara beose o create o report. Carelully handled, this report then

172

LI

"\.'*. ¥
M Mo M o N Ju X o By N W aa XX o W e Whe X

" ™ Y AT AT T N . A e e e AP ayn S
0y it .n\.-__v-, .P'v- o) o -,q \ R LS O T A A N G LA AR T G ¢ B R
M . .8 (e W) (3 {) 203 M

By hecomes the Input to the tools In questlon. Also, the tools within Byron are

- loosely coupled. For Instance. the Byron document generator outputs a flle
which 1s passed to a tormatter for flnal formatting. Some users prefer to
use 2 formatter other than that supplied with the system, so they decouple

f_: the formatter and Install their own. They only necessary modlfication Is to

‘_::?? have the document generator output slightly different formatting commands.

;:f:: and this Is easily accomplished.

" 14. Describe how your system supports hierarchical decomposition and flow

-.:{:: direction (topdown, bottoms-up, both, etc.), architectural perspectlves (designer
‘::ji_: creativity) and oblect-oriented design.

K-

The PSL/PsSA portlon of the system supports a varlety of design methodolo-
gles, including Yourdon. \Warnier/Orr. DeNlarco and Oblect orlented Design.
The core of PSL/PSA is the Probiem Statement Language. which permlts a
nser to desceribe a syvstem in terms ol objects and the propertles of. and
relations between these objects. Dilterent architectures will result from
different interpretations placed on the objects. For Instance. the objects may
represent data. or they mayv represent program unlts. When the design

passes to the Byron portion of the system. the methodology used may agaln
vary., Depending on how the Byron system s conflgured, different methodol-
ouvies nay be supported,

_ In zeneral. the natural mode of the syvstem 1s hlerarchical decomposition. As
_r the syvstem evolves, the task becomes bhetter understood and the need for
-:j—i new unlts becomes apparent. This does not. however. preclude the use of

. bottom-up design techniques: It a given set of packages Is avallable, that will
tend 1o influence the deslen, as people write specifications which the existing
O packazes satisty and Incorporate them In the system.

N 15. Is your system supported by formal syntax & semantics? Describe
briefiy.

® The PSL/PSA systen supports o language called the Problem Statement

.-'_ Langunge. This language permits the deseription o objects in terms of their
o properties and thelr relations with other objects. For Instance, the state-

S %) ments

9. DEFINE PROCESS new-cmplovee-processing:
DIERIVICS hired-employvece-report:

--
DATRE RPN
»

B}

detines o process object Thew-employvee-processineg” which erentes as anoouatput

D el ok Bt]
F]
o a
¢«
P R Y

- e

“lared-employee-report T

7,

s

Y
0L 180

R
< .,\\

a e
LY

B G PO A L U T U
" .~,_.~_\ Lo

The Byron system supports a superset of Ada, that 1s, Ada with the addlition
of structured comments. These comments take the form

Gr --|<ada_tdentifler:> <txt >
N where the ada_ldentlfler 1s a kevword describlng what Kind of text the

comment s expected to contaln. Examples of Keywords are "overview,”
“algorithm™ and "modifles.” The user 13 permitted to define keywords by

! stating the name of the Kevword, what Kind of Ada entltles It may be
- assoclated wlith, and the life cycle phase when 1t Is expected to be speclfied.
':-:3 16. Outline typical utilizatlon costs for your system (cost of acquiring, using,
~ tralnlng, & malntaining 1t).
=
-
Byron Costs
Mlcerovax Vax 7xx Vax 8xxx
per primary CPU $15.000 $25.000 $35.000
required tralning $ 1,100 % 1000 $ 1.100
. (2 persons)
TOTAL $16.100 $26.100 $36.100
n Malntenanee tor tirst vear s Inciuded. After that. it 1s 209 of the purchase
price.
PSL/PSA Costs
. approximately $120.000 total (rough order of magnitude)
includes: 5 coples of structured Architect
-j:: 1 copy of Architect Integrator (lncluding report specification
kN Interface)
. PSL/PSA
Meta-Plus (PC eraphies package)
) R person training In Ann Arbor, Consuitlng
:'.';i 17. Indlcate the hostablity (measure of degree of portabllity) of your
system.
::: Meta-Byron will be avallable on any DEC/VAN system running VMS. BN
re-hosts to vartous operating svstems are planned. Byron as a stand-alone
~ tool is available on IBNT 370 arehitectures running cither CNIS or NIV,
2
" DEC/VAN-VNIS, aned the Sperry 1100 <erfese PSLUPSA as o stand-alone tool
<
181

Sl el ™ 7 . " Y L ‘ “fat . U \J “alla, _ath ol - LR Yo i TR TRARNIN IR TS AT R TE T RETINTEY

. - =

q

NS

._:’

: avallable on all of the above systems as well as DEC ULTRIX and Apollo
. UNIXL

'
.

Byron ltsell is written almost entirely In Ada, as 1t Is falrly easy to rehost it
to any syvstem which has an Ada compller. However. a large amount of
code Is Involved, so a rehost 1s not necessarily a fast or cheap Job.

s r
AR

.

\ 18. Describe how your system supports Interdisciplinary abstractions/represen-
" tations (l.c., systems englneering, software engineering, hardware engincering).
- The <ystem directs its focus toward the creation of software. so very little

" support tor tasks such as hardware design is provided. It is possible to use
9,

the syvstem o express the requirements which such tasks place on the
13 .
sofrware.,

- 19. l1Hlow complete 1s the methodology - do lts principles embody
‘N

"

] -A development methodology only

-A design methodology only

j: -A programming methodology only

- -A projecet control methodology
.
" -A management methodology
W -All of the above ’
Ny . . . -)

N Phe svstem attempts to be as methodology free as possible. The PSL/PSA
::. pertion of the system can support the methodologies of Yourdon. Warni-

:f cr/Orr and DeNlarco as well as ObjJect Orlented Desiecn. The Byron portion
. of the svstem Is o similarly flexible, Nevertheless, it the user doesn't want o
. st any established methodology. there s a default methodology. This 1Is

- crimarilv o desion o and programming methodology. dealing with the informa-
- tion which <houbld be present In the code at varlous stages of the life cyvcele.
3 20. Deseribe how your system supports a team development approach.

! (Number ol statlons/uscrs).

- fie coneral, there are oo llmits to the number ol users on the system. The
:: ceaetieal Bmit i thnt of the compuiing power of the machine being uscd,

- Other than that, PSL/PSA has been used on wany large projects, and Byron
2 bos beenr used in ot deast one project. which peaked at approximately 1ty
D)
o s,
' »

L]

0

L]
' \

q

w*

W,
Y
$,

" 122

e

L]

'

o

£ - P e -

e T R e \JV B AT ST ")\"‘Jl".}‘"f";" Y ST L R (e e Y ".(s '.".‘ T W e ', W W 1"V e 3
) Wy v ViV 5 o ¢ " pe RPN ' N P LY
» "‘"l K] _.n- \ ~ P'.‘l .o,- '.I. .. .o.o .‘% AN .0,. ‘. o \ " ..0- N N M X o RN ,:"!':"J o

21. Describe how your systcm supports design trade-ofTs.

It Is possible to Include deslgn rational In the design. and to describe possibie
fiture enhancements In ways that make them easy to find when time or
money become avallable to perform the enhancements.

22. Indicate the range of problems to which the system can be applied.

The syvstem assists the user in creating software throughout the entire lite
cyvele, from requlrements analyvsls to test and malntenance.

23. List the names, addresses, and phone numbers of five (customers) major
users of your system.

Paul szulewsKi

Charles stack Draper Laboratories
Noso T

555 Technology square
Cambridege, NLA 02139

(G17) 258-1832

Larry Gilehrist
[Hueches Alrceralt Co.
NS GIR/L21S

1901 WL Nlalvern
P.O. Box 3310
Fulierton, €A 92634
(711 T32-5760

Paal Wood

UNISYS Corporation
NS Y HLAG

FNISYS Park

2.0, BBox 614525

St Pands NN 55164
[512) 456-7300

183

«‘._ \.".r

NG R PR
. ” b

Mike Wheeler
Grumman Melbourne systems Division
Huntington Quad #3

4th Floor, NLS. JO3-11R8

Nelville, NY 117446

(516) 752-3169

Bob Calland

Naval Ocean systems Center
Code 624 (B)

san Dlego. CA 92152-5000
(619) 225-6231

134

1'\} Ny W

\:\"'\.‘\.‘ -

NN

o, Wy w7 " (‘_.u' -\' wL WL W X g
RO a;ﬁ-;:m&.ﬂ

i

4

[d

7.

LR AR N
P R |

o et e DAV R

e

RSN P YL A WA

»

oy

» AR

»
P ¥

-]

P
WU
“'
'
Y
2
)

A A N@r S5 TN

vih e

Integrated sSystems. Inc.
101 Unlversity Avenue
Palo Alto. CA 94301-1695

—
-d
()

R

. P ™ M e N L R e RIS) ;
R S ACPCN N, J‘c o ﬁ._ ,\.r,\f..r:\ﬂﬁﬂ

"‘\

e Bl S3n S-a S & o & e

-

W W

L'kt

W""W b gy

NIty
Jm.r.-».-hn-

-'fn-.vl;.

.I\u.. \-\.

1nr

PEERRIY
Jx...,.,.,w..a 0......

LR
)‘-J.\'\

T
¢N

~ .-"‘_
N K

[
e
A

2

g
'
» &
'S

7/

N
i
v & s
. *r "

AT X3
»

il
,

Integrated Systemns, Inc.

’/

£ -

X 1. Deseribe how your system supports early detection of Inconsistencies,
-‘_:~ “ closure and errors.

S

I“.l .'.' i [+

.~ AuroCode/Ada supports the early detectlon of Inconsistencies. closure, and
v I errors in the following ways.

Eal L

R

~y A, Error cheeking on entered data 1s performed automatically as the
-—j‘_, clements of a design are assembied from a library of bullding blocks. This
:—"1 :-f; ensures that all «data definitions are consistent with the intended lunection.

S o b, The craphical intertace automatically provides an unambignous visual
N representation ol the functionality and Interconnection of all elements ol o
.‘I ISR . . . °

N SVSTe . his eives visual leedback on inconststencies.

{ ._:. .‘:'

e e .) . .

&~ ¢, The model linker that prepares syvstem models for simulation and
o code ceneration performs extensive checking for compteteness ol model
S, ~pecifications and inconsistent luterconnections.

.'T‘)
- d. A comprehensive shulation capabllity avallable with AuroCode/ \dla
YRS

D provides The ultimate test for accuracy and completeness of a design. ,
Desiens enn be sinvtdated directly or the actual Ada code that is producesd
SO Ly AteCode/ Ada ean be simlated.,

P " o

TN

-‘., “.. . -) - g
b~ 2. What type of progress metric does the system produce? s it quantili-
TA . .
:) L able measure of completeness?
7y - }
T AutoCode/Ada does not directly produce a progress metrie. 1t willl however,
n‘.

report ot missing or incompletely specifled elements when requested to
- asstmble oosystem, Indirectly, its automatic documentation features allow

s vou to o examine the cuarrent state ol completion any systenm or system

g~ 4~ cOMPONent. '

S . : .

Y 3. Deseribe how your system supports documentation, program management
ST and control.

L » s

F.' .'P
’ ViroCaode/ Ady is based on block diagrams, These diagrams are created

.":: 2. sraphically and Torm the bhasis Jor docimmentation ol o design. User specilied
J' N.' . . .
b textiual documentation on systenm clements can be entered (and is automatienl-
” . .

s [vomaintained in o the darabase) as the syvstem is created, Program minee-
"', "t ent ol control con he exercised by anxilbary software (dictated by 1the
£

L

Lt .

w

o

:: 187

®

'," ".

'-

‘.l

T P S S B . e m e g

AR ARG PR - N A

IR S S R e

X o WL % W WY I y

n~er) that provides for contiguration control, access restrictions md monitoring
ol the databnse files created by AntoCode/ \da.

1. Describe how your system supports real time design.

In AutoCode/Ada, o system design 1s specitied as a collection ol Process-

Blocks. Bloeks wirthin a Process-Block are connected with each other and
with the ontsltide environment via data Mows or control flows, These flows
are referred o oas data or control signals.

Process-Blocks can contain primitive functional blocks and perhaps other
Process-Bloeks (the system is adly hierarchical). A large library ol predelined
primitive bloeks is provided for constracting computational aleorithms and
control logle, nehiding state transition dingrams. AU the Process-Block level,
the user can specify atteibutes that determine computational trigeering andd
tiiming of that process. This allows the user to specify both periodic andd
event driven real-time systems that epcompass multirate/multitask applications,

5. Describe how your system supports concurrency, parallelism.

AutoCodeZAda provides a real-time model that views systems s collections ol
conenrrent. priovitized tasks. These tasks can be scheduled tor perlodie
execntion or ean be trigeered by asyvichronous events. xecution ol these
rackes is o conducted on the basis of M‘(‘L‘lll[)l.'l\'(‘ priority based scheduling.

Data and control tlows passing between tasks are handled such that all tasks
can be <afely computing in parallel. Thus, the Ada sonrce code generated
by AiroCode/ Ada represents applications that can be targeted to aniprocess-
e, s o well s mudtiproeessing and disteibuated environments,

6. Is your system constrained to a particular implementation language (Ada)?

N, A FORTRAN version of \urtoCode is also available. v O version s
auder development.

—

7. Does you system produce Ada IPDIL?

The Bloek=-dineram nndiace used in VoCode/ Ada 1< o craphienl process
description dnpeuaze. Adn code is o prodoced directiy from these bloek

Hacrane-. Virtoal code associated with an Nda compatible PO ean be

'
>

Thecrted in the conerated code by the nser vinocode ceneration templates Thod

o

are o previiled s opoart o of the WafoCode/ Vi svsteni.

oS
P A
L Yy

4
souy <@
L N A

v @ LY

.'n\~ -~ ’:’?."
—
o]
wW

HOOTO P

) o

- .

o

" .

'ﬂ R. Deseribe how your system supports life cycle intraphase & interphasc

G communications.
s

\ :'Af AwtoCods /Ada supports system development by using o structured graphical
:';' ’ langnage that Is applicable to all phases of the development proce.s. The
X ’ nse o a1 common graphical notation dramatically improves communications
~ ~ throughont the software life cyele and ellminates 1translformation errors that
o can ocenr between phases. sSpecifications. designs and docnmentation are
\ o maintained in ocatalogs that can be accessed by bhoth designers and iinplemen-
:;: .‘\‘ tors. Durlng the implementation phase, one of the principal henelits of

5 \nroCode /Ada 1s that the implementation produced by the code senerator is
: A anoeXact oexpression ol the design.
ol
B 9. Is your system automated, exccutable, compilable?
£
o - The cenerntion of code from block dingrams is automatic. "The Ada code
! Zenerated by othe corle senerator is both compilable and excenrable,

::: ':"i 10. Desceribe the graphics support lor your system.

- =y VitoCode " \da provides o powertul, graphies-oriented interactive interfmee with
- .« fowrdeapy support for a nmumber ol industry standard plotters and (aser

:;~ printers. Workstation versions o AuwroCode/Ad:r make extensive use o the
. fntest in workstation intertace technology. The interface incluades multiple
'}.i windows, mounse driven eraphic Iavout and manipulation. pop-up forms. and
. . pull-down menns.

::: 11. Desceribe how your system supports concepts of:

:_ :;. -lnarly prototyping vs. rapid prototyping

::) -Software reusability

! . -Information hiding

»:j .- -IPackaging coneept,

‘ -\ ' -Abstraction

| S -Typing

N _':‘ -Bivolutionary development

._ -Gieneries

- -Macros

S Dt Mows

- -Control flows

120

e

(SR NY WIS LARS
P

b

-~ .‘ ™ - » - L ‘-. .-. - A " ‘
A D e, AN 4

Py
-
»

- EDINGS OF THE STRATEGIC DEFENSE INITIATIVE 3/3
RD-R194 333 PROCE 0 CU) INSTITUTE FOR DEFENSE
f] R VSTEK 84 MAR IDR N 308
‘ UNCLRSSIFIED

Ay
I.’
-’
‘<
N

t.'v.,}.:.:; \

NS

-
v
LS
NN

i

P

o

LR,

TSN
)*.,. :\s-. \)

L7 LT
SN
."’-."*.‘

LIPS T
AR

e

-

Ne T
s ieae

o

l

l

™

I

l

TN T T TIRT Y

i et il
e
ey

=

114 flas

TETPU IO I TITuwG

.

IOONY P

il

P ..
ry_ ¥
’ ..,

SV I I)

L L R T,

Tl

e

e

-'- -t‘ .

s o

Poth

—
[LI

-

€
0

L3

£ 0t
» e e L

AP Y

-

O
a.

[48

AntoCode/Ada tacilitates both rapid and early prototyping ol o real-tlime
svstenl. A prototype of o system design ean be quickly assembled 1o the
AntoCode graphical environment and then evaluated using A\utoCode’s
extensive simulation capabllity. An early prototype canl be progressively
refined into a complete design. At any point n this process, the engineer
can Invoke the code generator to generate the code for any subsystenr within
the deslen. thus allowing evaluation of the actual Tmplementition code.

lnstead of storing the actual Ada code Tor o system Implementation. Anfo-
CodesAdn uses a template of the code with which 1t regenerates the code as
needed based upon a block diagram. The bloek dlagram specifieation 1= a
reusable. transportable representation ol a system that ean be stored In
<imple ASCI fles,

The torm ol Wierarchieal modeling used by AutoCode/Ada allows the user (o
constriet selr-contained. modular components at any level. Details can he
Licden within the modular components cenabling the user to deal with mceh
more abstriet objects, thus reducing the level of complexity ol the systemn
belne created,

ackasing, as 10 applies to Ada, s supported at code generation time. The
corle which i= conerated by AntoCode/Ada is provided as one or more Ada
packages that can be supplemented by user library packages. Features of
e packagineg can be controlled by the user via the code generation tem-

P tis.

VittoCode, Ve allows The nser to view his system at any desired level ol
gdbhatraction. 1 the user begins with general ideas that form a top level view
G the sysrem. this view ean be progressively decomposed into lower levels,
Finatlv, o tevel i< reached that requires only primitive functional descriptions.
With Ao ode/ Ada, this decomposition process s accomplished by omanipulat-
e jeons to deseribe the system inomuch the same way that an engineer
~iketeties destans by hand.,

Funinental o data 1vpes are predefined by AgioCode /A da aned are implicit in
Tl se o eneh Panetional bloek, These tyvpes are aatomatically mapped into

Prncee tvpe definitions during code ceneration.,

\ooustern clesionoenn evolve throneh progressive refinement ol anearly

Pty pes This tvpe o evolntionary process s stronaly supported by the
Seboine shmulation capability i Aaroode which provides for continnons
coes bt o ol The sastem o oany ol s componentse AU ench stace fn the

Cooationars proces-0 the cnrrent desien I ocaptured and o mointained inon

voden entalec which con beoased o entforee conlleuration mnnneemoent,

190

£ PR

P

.,

i o

QAL

-

.
v »s .l. -A

-

h] -
.“ﬂ

o8

The concept of templates s used extenstvely in AntoCode/Ad:r because each
predefined building block In the graphleal language 1s such a template.
Customtzation ot each template 1s provided by data supplied by the user.
Also. Ada language generles can be utllized directly by the user within user

specitied "source code”™ bloceks.
Text oriented macros are not used in AntoCode/Ada.

AuroCode, Ada s based upon a graphical block diagram language that
specifies Tlows ol both data and control signals.

12. Is there a paradigm cmbedded in your system? If so, describe it
bricfly.

The proradiziu embedded in AnroCode/Ada is the block diagram. [t forms
the complete hasis for desian and tmplementation of real-time systems.

13. Deseribe the external tools with which your system interlaces (Lool
compatbibility).

AnroCode, Ao tnterfces with NMATRIN and S\'S’l‘l‘)ﬁ\l_l&l'll,l). which are both
IS products that snpport system design and stmulation. FFiles are created by
AuraCode/ A ino s Tarm ihm can be easlly monitored and controlled by user
specsified conticaration management and control tools.

11. Deseribe how your system supports hiciarchical decomposition and flow
direction (Lopdown, botltoms-up, both, cte.), architecetural perspectives {(designer
creativity) and object-oriented design.

The bleek diermmsecerented with AwtoCode/Ada are Tully hierarchical inothat
any Process-Block ean contain other Process-Blocks. Process-Bloeks can also
e replicated freelys Phere are no restrictions on bailding systems from 1he
top ddovn, the bottom ap, or the middle ont. Greaphieal layvont s free-tform,
Tho abjects in Ao ode/ Ada are well delToned bloeks and nser crented

meulne components that are fanctions ol user-defined parameters and ol the

ot Plesvine into them.

15. Is your system supported by formal syntax & scmantics? Deseribe
brielly.

Vore oo v b based onoa coneisely detined interaetive eraphieal interfaee
oot allows von e assetnhle systems wraphieally from predelfined and ouser

et coqnpenents. CPhe senminties of ol soel conmponents s formeaiy

=
{Xe)
—

- < R PR L

S PR P G LR X T A T T e A T e e o Ve L'k PP AL L C P Y
-._’,‘, ,.,{\v"-*ﬁ.r.\..,‘. ',;\(»._.s._hx‘,.‘.u'_-,. \.,_,*.J,x‘.&.f.‘r. R VS v S A RN \\.-.‘_-\.
» 0 ~ o A N . A B B B B LA . '~ &) o’ - g s 3 0 . ~

g

o f

» A“
P N

v @
“qd o %

1P a

detlned.
from commaind tiles. which muast tollow formal syvntax.

As sueh, no formal syntax Is required. Deslgns can also be created

16. Outline vypical utilization costs for your system (cost of acquiring, using,
training, & maintaining it).

For AntoCode/Ada on a VANStation. typleal costs would be: 15-30K$ tor
the workstation hardware, 33K$ for the AuroCode/Ada software. approximate-
vl of direct training costs plus 1 man-month of time required to become
proficlent. Software maintenance costs for AutoCode/Ada are 209 /vear.
Quantity discounts are avallable.

17. Indicate the hostability (measure of degree of portabllity) of your
system.

The SYSTEN . BUD package on which AutoCode/Ada Is largely based Is
cirrently supported on VAN systems,. BN malnframes. IBM PCs. Worksta-
tion versions inciude VANXN=tations and Apollo workstatlons (SUN Workstaton
versions are being developed.), AntoCode/Ada is currently available on
VANstations and will he made available on other systems upon demand.

18. Deseribe how your system supports interdisciplinary abstractions/represen-
tations (i.c., systems cngineering, softwarce enginecring, hardware engineering).

The block ol diawrams ol Awtocode/Ada are orlented towards systems
cngineering, Similar block dingramming techniques are commonly used (hy
hoandh in software endineering, \wtoCode/Ada 1s a software engineering tool
That supports syvstem specification. system design, automated dociamentation,

simaintion and code generation,
19. low complete is the methodology - do s principles embody

-A development methodology only
-A design methodology only

-A programming methodology only
-A projeet control methodology
-A management methodology

-All of the above

VietoCoode Vel enne be nsed 1o support any structured desien and develop-

et et hodotocy, Procaramming s supported by antomated code geperation

St enn e psed to develop exeettable applfieation code (with exception of

Ponbaare deviee dprivess Praject anaeeiment and control ean he o performed

,;J\.;-r.;;\‘-r."-" <

Ny

N

VISP AR oy FTY

\

',

., A

(]
\

at

)

by auxillary software that provides tor configuration control and monltoring of
the database files created by AntoCode/Ad:.

20. Describe how your system supports a team development approach.
(Number of statlons/users).

AntoCode/Ada supports team development through the decomposition of a
syvstem into a hlerarchy of subsystems. each of which may bhe developed
independently and then integrated. Catalogs of bloek dlagram representations
ol system components can be shared between development teams as neces-
~ary. The number of simultaneous users Is determined only by the host
svstent, [For example. VAN hardware can support multiple users on a single
machine or distribited workstation access through a network. User supplied
confizuration control tools can be used to control access to syvstems under
developiment.

21. Deseribe how your system supports design trade-ofls.

AutoCode/Ada supports design trade-otfs through rapid simulation and system
prototyvping,

22. Indicate the range ol problems to which the system can be applied.

NitoCode/Ada s o real-time system design and specitication tool with
applications in enldance and control problems for atreralt., spacecraft. missiles,
nrocess control svstems and servomechanisms. [cxtensive simulation capabill-
ties e currently available with the AwoCode/Ada toolset (and more are
nuder development) making it suitable for use In major simulations including
battle management. trajectory evaluation. ete. Automated code generation
provides o sieniticant eapability for real-time simulations ieluding those
recuiiring hardware in the loop.

23. List the names, addresses, and phone numbers of five (customers) major
users of your system.

ViroCode /A I enerentdy in beta-test at thiree sites:
Pricl Roveps

Edve ity o Houston Clear Laake

Fheh technolosy Inb

Flearsten, TN TTOIN-10O6N

SR INR-L02

133

. L T I

AT ‘.rf".r'" "‘ ’\'ﬁ--/‘ - J' .r_’.r .«-\.-.‘.r .-:.-:.r".f'_:.f;.r -I\ ./-'.)-‘.r AL r* ,» e J'a.ll#('

A A

i PO WAL B e S -loe.ln OO

'**N =
SR o ¥R OB,

k)
LN

I 4

s
.
OO
-

x, 4

(ot 4k el
. .
.

gL 28

Il“- ‘l‘ll ¢

v
L
n,

-,
L o]

AN

Iy
»

Al

w
y & N

LY LV
TSN

@

4
ISEMALS

LA A .

S es

aShNNAR

kL

s

Pg
?.

x

Alok Das

USAF/RPL

DY SS-Stop 24

Edwards AFB. CA 93523
(S05) 27T5-5412 '

Niranhan Rao

Boeing Military Alrcraft Company

MS K775

[.0. Box 7730
\Wichita, Ks 67277
{316) 326-T918

191

s

\-"\'&

o, -I‘.cl‘

"

L

.

ORI T
MACRCLON S

» «.

kg ¥
N
.

,

- ™
'.- -~-.
- .
‘.\

'.-

. -
»,

.-

A
O
» - "\
SN
,

AN
l.

]

-
S P
X

S
L.-
e
N
L
7
h‘.‘.

PLAARIM

s

software Products and Services. Inec.
1+ ast 38th Street. 14th Floor
New York. NY 10016

m‘("(

Ny,

A
S ~°
AN
\J
S
AT S
[4
i
e
s
-’ S
AN -
Y)'.
.
-\

<

>
o e
’ --l
-
<
P% -‘(.‘
4' --.
-:‘)
» ¥
N e
S Y
' (+
-
SO
1] »
i
* -
4 .
5
‘-
14 "’.
1400 ..
1 e
L .
N 195
o -
;T
Cd
'‘Cs
- v L2 M e e 2 T e e e e R T
% i

;

MRS PV S Y AT oI g S S
’,‘-J,% -.’1‘\ --‘.-"-‘\. .

s

.
L

\'
L)

S W T T e -w\w.-v«-uw-uvw\wwwmmmmmmm'mmvrh:wmu—v~-w
196
[" 4 o W
.P.),'._,\-:Sf" 5\. > o :

LA

-

e
S

Um.v).. . R R tee .. A \.\.\.......n. BREEEE N ‘........r. r........ R AR R Jade 5o T e RN
2 d > M AR e e Y Al s _vaw A,
R LRI (_ SN0 RS _ WS Dt L B e e S L GITE @

R e e e e i Ay

Software PProducts and Scrvices, Inc.

1. Describe how your system supports ecarly detection of inconsistencies,
closure and errors.

Both error prevention and earfy error detection are routinely supported by
EPOX. A powertul set of analyvsis programs provide redundaney, consistency
and completeness cheeks of parts ol the system requirements, as well as
checks for completeness. type conflicts. inconsistencies in the export/import
relations between modules/packages, missing value assignments for data. ete,
Some too] analvsis is done automatically: the remainder is nser-invoked.
EEPOS ¢hiecks the requirements specilleation and conceptual «design lor:

-correct o svntax.,

-conpatibility of tormal clements input with information in the
project data,

—compatibility ol decision rules with decision process delinitions,
-completeness and consistency o decision tables,

-redindancey,

-completeness ol substitution and references to requirements,

2POS checks the systenn design specifieation for:
-completeness o hierarchy design,
-name confliets.,
-non-referenced design componenls
~fmportant hierarchical features such as data type and ranse consistency,
-non-contradictory svnchronization
-completion ol project requirements,

Additional analyvsis and support ol automatic code generation ncilities sueh as
checks Tor safficiencey of desien for teanstormability to Ada code are also
supported,

2. What type of progress metric does the system produce? s it quantifi-
able measure ol completeness?

There s support Tor several representation (requirements specifieations. desion,
proveram codey, Several levels ol abstraction -- indieatine different dearees of
completeness - can be visualized, The deeree off completeness can he
measnred by the completeness of the representation Usell, and by the
Fuliilinent of requirements Torm an earfier representation. EPOS ases
~tnede anified database wWhich intecrates pequirements, specileation (designd omned

137

<A
—~

L R]

&

A
LN

mannzcetnent activities permitting o comprehensive overview ol prosress o
development thronchout the project,

3. Deseribe how your system supports documentation, prograim management
and control.

Porticons of Jor complete) docnmentation ean be produced o several ways
Torn the project databasc, Phe system Inceludes project planning (work
Bresihdown structure. network planning) as well as project control (actu-

Al nominal conmpparisons, vVisualization ol progress, ete.). Text and graphs are
produced aurtomatieally to support documentation. design and program
mannzement. DPOS will antomatieally produce o large varlety o araphical
ctputs providine representations of both desigin and project manacemenld

Tt rmntion,

1. Describe how your system supports real time design.

A necessary peal thne constracts are provided in the specifieation laneange
G very hiche probteme-ariented level, and are therefore easy to o understand.
o oxampic. svichronization, motual excluston, eyvelieal operations. cle. are
Sy rted, voditionsty, FEP2OS provides the option to autamatically wenerate
Ao eode o Ndn code ragments wWith the further ability to provide annotat-
N i o support of the Ada development activity. Furthermore. high-level
real time constroets ean be transformed by EPOS antomatieally into lower

fevel Nddn code construets,

5. Deseribe how your system supports concurrency, parallelism.

AL rend thme aspeets ineluding tasking, coneurrencey. and parallelism are
~upported. 10 the tareet proeramimine anguaee for the code cenerator s
capable o dealing with these requirenmients (s in the ease ol \da). appropri-

abco renl thne constenets oare cenerated i the progrant Cdad code,

6. Is yvour system constrained to a particular implementation language (Ada)?

New T <svsteny s bangunze-independent. oo seleeted implementation
Trncmees ench s Aol Paseal, Forrpan, eted) FPPOS olfers additiona] specitte
Sippert. EPOS desion sapport funetions tor afl ineunces inchude assistoanee
Vo cbeion, development nd assemblyo ol othier THOLS suceh as Jdovial or

N R R R A SR EETN FUYEEN

e a” e e an A

R

X

Y

f\

v
Y &

cyrroe
5 Yy

e

W

v

s

>
v

o

LAl el R Sl Sl Sk Sall Soll et i 4

7. Does you system

CERETET TR T TWs T

produce Ada PPDILY

T WY

WU WUW, VNN J ="y R

No. not directly. FEPOS. however., provides a design language o deslgn
~vstems cnd progreram=. which fulfills the requirements of PDIL objectives.
Additionally, there i the option to produce annotated Ada code directly.
Code frmaments may also be o ontpnt 1o assist desten and rapid prototyping.
K. Describe how your system supports fife cycle intraphase & interphase

communications.

the difTerent

and,

Dilterent [or

Feedbnelk.,

representation

consisteney cheeRs to =0t

phases ot the life

ne extent, antomatic

(‘.\'

cle. T
teanstormation

racine,

are provided between these representations, EPOS™S anified database provides
current sratns information tooall participants throughout the project life cyvele.
9. Is your system automated, executable, compilable?
The svstem i~ hichly antomated throvnghout s varions phases of operation,
i~ also capable o providine (for certain HOLS)Y antomated sonree code
Sonerst o, e provides dntearnted support for software/hardware development.,
~cveral o rpansformations are nutomated. Phe svstem s execatable,
10. Deseribe the graphics support for your systen.
Crilizine it~ nnifled dntabose. FEPOS OIS capable of aatomatienlly cenerating
2raphs aned texts lutensive sraphienl oatput (hierarchy dinerams. data
~tracture dinerarms, data flow and control flow diagrams. Petri-nets. harooware
Ploek oo~ module contection dingrams, bar charts, PERTT charts, Gantt
cliart=, eted Graphic Input ol specifTeations I~ in development {(proterype
versicas e hierarehy dinerams sand ot seharts exiso).
1. Deseribe how vour system supports concepts ol

-lnarly prototyping vs. rapid prototyping

-Software reusability

-Information hiding

-Packaging concept

-Abstraction

ST'yping

-lovolutionary development,

-Gieneries

-Maeros

192
|99 e "-‘\’& NS T T) W te e W TR e B e N R e N T e, L.
-’J‘J'J‘-J‘J‘JJ‘? vf‘n" J‘_w",»l‘-ff{‘)‘-l‘ J‘J‘:l‘ J‘-’f
!' -’Q) *" \$-‘\ . .‘ 0 T o) a¥E aBL hl 28 o.IA.Op'l" Ot LY

>

o',

(SR an R8s - . ~ A TR RN TR R NI T W IR R WM W W N I T e e et e

D -Data Mows
-~ -Control flows

Puarrs o the desten ean be prototypes ustng code ceneration capabilittes, el
codde Trizients for Ada developinent.

Thee required object deseription and the concept of Thrary modules, together
With o varicos powerful mechanixsts for specifving attribates and searching, are
She el For software reasability, which can be addressed at o varlous levels ol
dhesTrnetion.

Pl gesdnle copeept allows the sopplication ol principles of information hiding.,
The Ndn apmaysis packaee, 0o addition to its other fancetions, entorees
npdinnee Wil ViSTRIry rles,

Shobless pacekages can be ospecelled and anadyzed with o analysis progroms which

el Hbeort export eonsistoneles and s VISR rules,

Vot~ nn e o levels o abstraerion ean be defined according too user
et vies P LONTD BPPOOTEDAND etenr oas o owell as onser-defined vy pes oae
~~ihge Nndvsis is previded.

Difverent boilds are possibile, Trocing ol changes and extensions possible 1rom
i reaqriremenis specitteation too the design and code,

Conortes e nol directiy ~upperted in the carrent version. bhut <imilar

prcent s e ldevable,

Pocabedn ~peeltTeary oy o nieres i peossibles The semanties are Known 1o the
AVH FYREES FERE N R I

~poceDTent o o data Vlow i sapperted oas one of the desien methodoloeios,

Corplien it b nt st o ol oy ~t=oare provided,

~teoedtention b ceaeab flew s o supporteds cither o as oo dominant Manetion in

Proe et ioncriented desicn et hodolosys or e addition 1o other specilTeations

l."l_l"

e gt de 20 Boton=ive craphienl doemmentation and oansdssisooor

oh

A
R'f'/- \.'_

A . e \. A \ SR TN -. \'
M" .N’\ T ___,,\,h;-\ "~ n._\. "C-.':x'ia s "‘ A

-

e

——
by

‘n’

‘n gt

.

£

o,
X

12. Is there a paradigm cmbedded In your system? I so, deseribe it
bricfly.

The poreadicm stmilar to Balzer [Balzer. Cheatham. Green: "Software Technol-
cenoin the 1ooo’s: Ustng o New Paradigm™. [LEEIS Computer. November,

LONs o te automnte ater phases (code weneration) in the development life
cuvele and te cmphastze earller phases.

13. Deseribe the external tools with which your system interfaces (Lool
compatibility).

N ceneral intertee tooextract Information frony the data base and provide

o cther 1ocdss The machine editor isointerfaced and used directly during
Gectepment. Special ntertaelng to o graphle editors s In development (proto-
Cape wersionsn General interfaces to o plot tools.

11, Deseribe how your system supports hicrarchical decomposition and [lMow
direction (topdown, bottoms-up, both, cte.), architectural perspectives (designer
creativity) and object-oriented design.

Dicecr iy <upport~ hierarchical decotnposition with appropriate syntax construets

Snd eerve=pendine abstractlon levels, Both top-down and bottom-up ap-

crennclies e possible and supported. Object-oriented desion s one ol the
eipes o The system (Ianguoge elements are desien objects).,

15. Is your system supported by formal syntax & scmantics? Deseribe

briclly.
Nooss o osasteqn dncehides specitieation inguages with formal syntax and senminn-
View, osuntan cheeker (Parser) s provideds A seto o analysis tools for

Shnatine the ~canties and for transtorming representations secordine 1o

AT ~omemnties s oalso included,

201

LI S]

—_ i AN ¢

(~.,(-.,,‘~"»'¢ , W T) S 1 % ‘-‘(7, ‘-y’_ »
BRERhatRRsan et R St S L O Gt O RSN S A s AN

LY
L
N

2O,

NN
S..

{ (

¥

-
Ty
Py

. -~
NN

‘o

AL

A" 1Y

TN N
NI

16. Outline typlcal utilization costs for your system (cost of acquiring, using,
tralning, & maintaining 1t).

~ingle VAN Installation $-42.500
I week of training $11.250
\nnal matntenance fupgrade fee $ 6.600

Toral $60.350

Price in effect as o February L. L9RT,

~pecinlized sapport s also oftfered.

17. Indicate the hostabllity (measure of degree of portability) of your
system.

Neryv el dearee of portability (one of the objectives ol the <syvstem). 1KP2ON
oadready avallnblie on the DEC VAN family (730-8600): 13N PC N1 AT
and N compntibles (Toshiba 3100) IBNT mainlrame (VN/ONS and
NIVSUTTSO0 Intel SO86/50286 0 (IRNIND): Stemens 7000 (13520000, Porting o the
~vstem of other machines is available on request. Notorola 68000 (8 NN,
ENIN L2 and Bell 5 implementations will be available in Nareh ol [OST.

18. Describe how your system supports interdisciplinary abstractions/represen-
Lations (f.c., systems englneering, software engineering, hardwarc cngineering).

I POS supports systems engineering, Le., support o soltware developiment s
W ns hardware conficuration. system and hardware development is
Sipperted i an environment that itsell supports multiple methodologiend
dpepronches and o simualtaneons mapping of software and hardware concepls,

9. llow complete is the methodology - do its principles embody

-A development. methodoiogy only
-A design methodology only

-A programming methodology only

~

-A project control methodology
A management methodology
-All of the above

202
I e S T VRl i T S e S P T A N P S S e S S TSI P W S L W)
Lt AT 2 PN A N A Y CPRe W W oo g,
AT ...‘...- R b b Y R TN M e .‘.l..'!.!!"'l o.!'-

. « - -V a - Wy . - W - ~ - " - S oA vl - ol R - ol _ « y = "a b v Ty 2 Faltald " e B ” o e v P SV fas o4

..

TS
1720

-

i E ALl of the above - EPOS ltselt represents o tull design and development
B philosophy with Integrated methodology sapport. Additlonally, EPOS s
method-tndependent and supports various standard methodology approaches
, such as tunctlon-orfented. device-orlented. event-oriented. module-oriented, data
structure-oriented, «Jdarta flow oriented and method neutral. with the ability to
antomatlieally suitt methodologies during nse.

K 20. Desceribe how your system supports a team development approach.
(Number of statlons/users).

13
b
Project planning of team stallfing and work assicnments. as well as responsi-
. bility analysis is provided., The work ol the team mmembers is performed in
L
: e a so-ealled decentralized workstation concept with a central project databose
ton maintrame of POy oand <everal workstations for the developers.,
s Feam members ean work on different types ol machines. with «data exchapee
k and integration possibice,
1S
S 21. Describe how your system supports design trade-ofTs.
n Not divectly supported, althouch anadyvsis is provided to analyze dilterem
de<icn approaches.
.
- 22. Indicate the range of problems to which the system ean be applied.
._, FPOS has been succeessfully used in o large mimber of dilferent projects,
R neindine real time projects and commereiat applieations. Project size hios
.~ ranged Trom <smoll. one/two-person projects to complex efforts involvine
>, several nerospace companies,
- Taoroet Ineuances may ranee from assembler to Nda and other high-level
Iy Fapetiees,
SR
k)
: NS The syvstem s ~uited for ol phases o development and o ranee of tenm
Y. Sizes. wWith intearated ~upport for development and managenment.
.
v
[

203

x

)

L &
1" o
[g

o N
LAY
'
PR

.

23. List the names, addresses, and phone numbers of [ive (cusl,()mcrs) major
users ol your sys.oni.

[
4

t
’

D
[RN AN

The FEPOSN system s in use on wmanjor projects in approximately 250 instaila-

.
N

.
s

tions worbl-wide, Users inelude:

v ol
]

¥]
.‘ #
-5 West Gierman Mindstey of Detense o Grumman Acrospace. MBI (Nesser-
G schmirr-Boetkow-Blohm), Phillips. Robert Bosch, hase 10, and Contraves, (o
-l-’ . . g . . - . -
SN e o tew. specifie contact Tnfornmtion s available on request.
"'._:.4‘
BPPOS REFFICRICNCES
'-::‘ N Fekbare schwab
o AMinistry of Detense - Bonn
oL e Vg
"—'.‘ Fomeleilstr.
- D-3000 Bonn AWEST GERNANY
O10/258 124 53
< Do It Neppner

.

’,
i Director. Technical Plinning Div.
o Coutraves Gmbll
y :: Winterspurer str. [7-19
Y D-7768 Stochach WEST GERMANY
-~ ,
Yy OTT/77 N 13 5T
~F
o~
= Dr. WNilenk
o NI N fesserse it
‘& Deprs LINE 111
S5 D-a02 Ottohran AWEST GERNIANY
_.v e et he
“ Plitis INossel
Dept. INEFA
'::: Peositaeln 310320
P, P)-a0000 Innssel AWEST GERNTANY
'-:. e Nlods
. IANT B b rtory
::" ~cheonndebiensre, 220
'd
‘A D-7000 Becblinesn AAEST O GERNEANDY

St

e’ X .
N ;'\ l' o
[\]
S
>

-

1 TNT AT S BRIV RS P W
N VAT

= A~ vwwvm-;-v-'-]

4 4,8

a

A

14

PRENE

»

¢

-

~ny’

‘;"'*. -~

o
e
)

v L4
N e
AR

Lo

o o € T TG T Ca
., -N'r\'- :u*"-)*n‘ \'k‘\ LS

«

- f. f. ri ’- o,
A PP RN,

LA G LY o T ™
K .I\.{,\.(-."y), .1*._,-..{\‘_-..,

-
-

206
e
Oy)

PR AN 4 . . . " o N 2 S S Bin B e { LA R] T e w e Bow omo e e gy » - - m_a_v . e a_a . .
S : .-.........‘.u““ AN P] LA DA A o N R TR AU A A A
) RIS v Pl Ny a SN AR , [N NN AL L AW 4 IR A IR T Th
FL : VAP g A rOCRAAN e S s SR ® PR B P x

912 W. Illinois Street
Urbana, Illinois 61801

mwmmmmmmWvar
P
3
R
L “‘ Distribution List for IDA Memorandum Report M-308
» -
E, u NAME AND ADDRESS NUMBER OF COPIES
E .
b e
S Lt Col Jon Rindt 3 copies

i SDIO/PI
| 1E149
[-, Pentagon, Washington D.C. 20301-7100

w,

Other
Fo
e Defense Technical Information Center 2 copies
Cameron Station

Alexandria, VA 22314
: - IIT Research Institute 1 copy
& 4550 Forbes Blvd., Suite 300
E = Lanham, MD 20706

-
y CSED Review Panel
P -
Y Dr. Dan Alpert, Director 1 copy
2 Center for Advanced Study
& University of Illinois
4
K

2 Dr. Barry W. Boehm 1 copy
[TRW Defense Systems Group

MS 2-2304

One Space Park

Redondo Beach, CA 90278

‘ Dr. Ruth Davis 1 copy
= The Pymatuning Group, Inc.

2000 N. 15th Street, Suite 707

Arlington, VA 22201

T Dr. Larry E. Druffel 1 copy
Software Engineering Institute

. Shadyside Place

o 480 South Aiken Av.

‘£ Pittsburgh, PA 15231

N

7

L 3]

v

ct

e A A e N et S R M« e e gL R T W O S SR Ot A
S T B M s A SV Y
v Wg %y Iy g %) n . h a Py U p Lot AL B adt o y

N 0)

......

Dr. C.E. Hutchinson, Dean 1 copy
Thayer School of Engineering

Dartmouth College

Hanover, NH 03755

- Mr. A.J. Jordano 1 copy
e Manager, Systems & Software
" Engineering Headquarters
\ Federal Systems Division
SN 6600 Rockledge Dr.
o Bethesda, MD 20817
o Mr. Robert K. Lehto 1 copy
b7 Mainstay
. 302 Mill St.
o Occoquan, VA 22125
N M. Oliver Selfridge 1 copy
o 45 Percy Road
e Lexington, MA 02173
2 IDA
ot General W.Y. Smith, HQ 1 copy
o Mr. Seymour Deitchman, HQ 1 copy
- Mr. Philip Major, HQ : 1 copy
o Ms.Charlene Pandoli,HQ 1 copy
o Dr. Jack Kramer, CSED 1 copy
e Dr. Robert I. Winner, CSED 1 copy
o Dr. John Salasin, CSED 1 copy
s Dr. Cathy Jo Linn, CSED 3 copies
v, Ms.Julia Sensiba, CSED 2 copies
) IDA Control & Distribution Vault 3 copies
L
b

J‘
L3 l'

Al TR
. l' " .

NANNE

b Zor *
L85
4
ST
L I I)

SR
(3.4 L AN
R SENSNSNY

-’
-

‘.v

9
‘:::‘_;\'1-.* '
¢\ "\ ."\ ¢

>,

L
N"J
P
Aol
o

A
1%,
W,

¥
w,
S

|]

X
RN Ny
SN

it

L L)
= U ZRy

+—

‘“ ED/

L 4
A BRI RN NS R
N AN NN
e e P et
L N MRS
ﬁ 5 \‘-‘\'\-'r\
.. \¢\".* ~(‘.
L X o O X XY

AR

L %

PN
Ih

—
Y
o
»,
o
LSOt

35
e
g

PO AN
g
‘ l.'.n‘ji.f.'
a,
&) 'l W

-
>
ARy

i
>

i o L [
A N
. _\'ﬁe,. RN

A N Lot ey

T T) s

\Ot .o'.a Pt e

* &

[Bl =
K .
ﬁﬁ.-s..a e

4, Ll A

— = ..
gqf:?
2

o
TRy w
3

>
W,

Gl A
rP e S AL
S
It A
. .v-..u.\n\‘ d
F..”...WN
Pa-ay =y P AR L NN e R A N P A A AAL APl N Gy T AT PO ARE GR R RTRVES BT R S Pl ol el " bl -
& \.- '|I._, . L ..- 3, > \-ﬂ--f\.-\f&f-.j ..»b.;-v ‘\-‘-.. -.-m. n\-ﬁ\h-\-‘ "y nN . u-n h-\-\p..-_r\) NN IR f-.. ..\-\.-\.-w-n-h .1.._-.... ANl. . _vaf et o ‘ o e n.\fv ~ .
“ i 4 e ., W W~ # ke vl ’ Al A4 SR ' fad - Ky L 1 ' - Rl e g

